
Documentum 5 Architecture:
A Technical Overview

August 2003

© 2003 Documentum, Inc. All rights reserved.

Documentum, and the corporate logo are trademarks or registered trademarks of Documentum, Inc. in the United States and throughout the world. All other
company and product names are used for identification purposes only and may be trademarks of their respective owners. Documentum cannot guarantee
completion of any future products or product features mentioned in this document, and no reliance should be placed on their availability.

This document is Documentum Confidential and intended for registered customers of developer.documentum.com. It is not to be reproduced or dissemination by
any means to non-customers of Documentum, Inc.

Printed in the U.S.A. Part Number 60450803V1

Table of Contents

Chapter 1 Enterprise Content Management ... 9

Content Applications ... 10

The Building Blocks of Enterprise Content Management 12
Pervasive Content Management ... 12
Managing the Content Lifecycle .. 13

Creating and Capturing Content... 14
Managing Content... 16
Delivering Content .. 17
Archiving Content... 19
Processing Content.. 19

Creating Content Applications... 21
Completing the Digital Value Chain.. 21

Chapter 2 System Architecture ... 25

The Four Layers of the Documentum ECM Platform ... 25

Content Repository and Services Layer ... 26
Documentum Content Repository... 26
Content Objects .. 29
Content Server ... 30

Repository Services... 30
Library Services ... 32
Content Management Services... 34

XML Content Management Services .. 35
Process Automation Services .. 36

Extended Services... 38
Media Services ... 38
Content Intelligence Services .. 40
Content Exchange Services... 42
Site Delivery Services.. 44

Interface Layer ... 47
Documentum Foundation Classes... 47
Documentum Business Object Framework... 48
Web Services ... 49
Standard-Based Interfaces .. 50

Client Layer... 50
Microsoft Windows-Based Applications.. 50
Documentum Web-Based Applications ... 52
Content Services Integration with Enterprise Applications 53

Chapter 3 Developer Tools ... 55

The Development Life Cycle... 56

Configuring Content Applications .. 57
Documentum Administrator.. 58
Documentum Application Builder .. 58

Developing Content Applications... 59

Documentum 5 Architecture:A Technical Overview 3

Table of Contents

Documentum Foundation Classes... 61
Business Objects Framework .. 63

Type-Based Business Objects .. 64
Service-Based Business Objects... 65

Data Access APIs ... 66
Documentum Web Development Kit... 67
Documentum Desktop Development Kit.. 69
Documentum Portal Integration Kit .. 71
Documentum Media Services SDK .. 72

Deploying Content Applications .. 74

Chapter 4 Enterprise Platform Fundamentals ... 77

Open .. 77

Extensible ... 77

Scalable .. 78
Multitiered Deployment ... 78
Horizontal and Vertical Scalability ... 79
High Performance ... 81

Minimizing Connections .. 81
Minimizing Data Transfer... 82

Reliable .. 84

Secure .. 85

Portable .. 86

Global .. 86

Comprehensive... 88

About Documentum .. 89

4 Documentum 5 Architecture:A Technical Overview

Table of Contents

List of Figures

Figure 1–1. Content Applications Span Industries.. 10

Figure 1–2. Content Applications Span the Enterprise .. 11

Figure 1–3. Pervasive Content Management ... 13

Figure 1–4. The Content Lifecycle.. 14

Figure 1–5. Integration with Authoring Tools ... 15

Figure 1–6. Version and Rendition Management ... 16

Figure 1–7. Virtual Document Management ... 17

Figure 1–8. XML Publishing ... 18

Figure 1–9. Content Lifecycle Management ... 20

Figure 1–10. The Digital Value Chain ... 22

Figure 2–1. Basic Documentum Architecture.. 26

Figure 2–2. Content Repository Structure .. 27

Figure 2–3. Globally Distributed Content Repository ... 28

Figure 2–4. Documentum Document Object ... 29

Figure 2–5. Documentum Object Hierarchy and Sample Attributes ... 30

Figure 2–6. User Authentication... 32

Figure 2–7. Version Tree .. 33

Figure 2–8. Object Relationships.. 33

Figure 2–9. XML Content Management .. 35

Figure 2–10. Documentum Workflow ... 37

Figure 2–11. Media Services Architecture ... 39

Figure 2–12. Extracting Information From a Document With Content Intelligence Services 41

Figure 2–13. Conceptual Classification ... 41

Figure 2–14. Content Exchange Services... 43

Figure 2–15. Inter-Enterprise Workflow Services .. 44

Figure 2–16. Publishing to a Web Site With Site Caching Services ... 45

Figure 2–17. Site Deployment Services Builds on Site Caching Services 46

Figure 2–18. Documentum Application Programming Interface (DAPI) .. 47

Figure 2–19. Simple Client and Server Architecture .. 48

Figure 2–20. Product Business Object... 49

Figure 2–21. Documentum Desktop ... 51

Figure 2–22. Documentum Webtop .. 52

Figure 2–23. Content Services for SAP ... 54

Figure 3–1. Development Life Cycle for Content Applications... 57

Figure 3–2. Documentum Application Builder .. 59

Figure 3–3. Applications Involve Coordinated Customizations at All Levels................................. 60

Figure 3–4. Documentum Development Tools .. 61

Documentum 5 Architecture:A Technical Overview 5

Table of Contents

Figure 3–5. Documentum Foundation Classes .. 61

Figure 3–6. Custom Object Types... 64

Figure 3–7. Type-Based Business Object ... 65

Figure 3–8. Service-Based Business Object .. 66

Figure 3–9. Documentum JDBC Services .. 67

Figure 3–10. Documentum Web Development Kit (WDK) Architecture .. 68

Figure 3–11. PIK Architecture... 72

Figure 3–12. Media Services Plug-Ins... 73

Figure 3–13. Deploying Content Applications as DocApps ... 75

Figure 4–1. Three-Tier Deployment .. 79

Figure 4–2. Connection Pooling ... 82

Figure 4–3. Webtop Streamline View .. 83

Figure 4–4. Content Server Clustering... 85

Figure 4–5. Web Content Language Fallback Rules ... 87

Figure 4–6. Documentum Universe .. 89

6 Documentum 5 Architecture:A Technical Overview

Table of Contents

List of Tables

Table 3–1. DFC Packages.. 62

Table 4–1. Supported Configurations ... 86

Documentum 5 Architecture:A Technical Overview 7

Table of Contents

8 Documentum 5 Architecture:A Technical Overview

Chapter 1

Enterprise Content Management

Business information exists in many forms: text documents, spreadsheets, images, XML files, Web
pages, streaming video, streaming audio, e-mail messages, instant messages, and fixed content such
as reports, records, and scanned images. From engineering drawings and manufacturing procedures
to marketing collateral and sales presentations, unstructured content is critical to the smooth and
efficient functioning of a company.

An enterprise content management system provides order to unstructured information. It manages
the creation, management, processing, delivery, and archival of any content according to user-defined
business rules. It establishes relationships between pieces of content, allowing the same content to
be used in different contexts and renditions. It adds intelligence, creating categorization schema
and metadata that make search and retrieval faster and more efficient. It automates the processing
of content through its life cycle. It facilitates publication of content through multiple channels; for
example, the same content can be published to a Web site, broadcasted as a fax, printed as a text
document, and sent to a handheld wireless device. It promotes integration between departments
and systems that previously worked within silos.

Documentum 5 is a robust, flexible platform that supports enterprise content management
applications. Documentum 5 is a set of products and services that work together, in varying
combinations, to meet the content management needs of an enterprise. The Documentum platform
makes it easy to customize applications to meet specific business needs or to build custom content
applications.

A platform provides development and runtime services supporting the common needs of a variety of
applications. A platform provides a high-level interface to key functionality, so that the developer
can focus on solving the business problem. For example, a database platform provides the services
common to applications needing structured data storage, such as creating and maintaining data
structures, controlling concurrent access, and returning query results. A Web application server
platform provides an infrastructure for deploying Web-based applications, handling such essential
tasks as managing memory and sessions, controlling user security, and providing an administrative
interface.

The Documentum 5 platform offers development and runtime services specifically supporting the
needs of content applications. The architecture ensures that these capabilities work in an orchestrated
fashion, enabling an enterprise to integrate its applications into a complete enterprise value chain.

This document provides an overview of the Documentum platform. It identifies the core capabilities
and features required in a content management system and describes how the Documentum system
architecture supports these capabilities. It also describes the development environments available for
customizing and building Documentum-based content applications.

Documentum 5 Architecture:A Technical Overview 9

Enterprise Content Management

Content Applications

Content applications are any applications that use unstructured content, such as
documents, images, e-mail messages, and Web pages. The range of applications that
use some form of content services is extremely broad, comparable to the range of
applications that use a database platform for managing structured data.

Figure 1–1. Content Applications Span Industries

Examples of content applications are:

• Contract management applications track contracts through multiple versions, enable
multiple people to collaborate on writing and reviewing them, enforce a strict
approval process, and allow boilerplate text to be shared between documents.

• Web content management applications track contributions to a site from multiple
sources, manage updates, and handle transformations that render XML into HTML
using XSL stylesheets or create HTML renditions of documents authored in other
formats.

• Knowledge management applications provide a single point of access for
information stored in a multitude of formats and repositories.

• Regulatory compliance applications enable companies in regulated industries
such as pharmaceuticals and financial services to meet mandated standards for
project-related documentation and associated business records.

• Enterprise Resource Planning (ERP) and Supply Chain Management (SCM)
applications automate business processes that often involve unstructured content as
well as structured content. For example, the specification for a manufactured product
can include a CAD drawing in addition to a bill of materials, and personnel records
can include performance review documents as well as job and salary information.

• Customer Relationship Management (CRM) applications manage customer data
such as contact information and records of customer interactions made during sales

10 Documentum 5 Architecture:A Technical Overview

Enterprise Content Management

or support calls. Much of the valuable customer information is unstructured, such as
e-mail messages, faxes, or service order forms.

The first four applications are examples of content-rich applications, for which the
management of content is a central concern. The last two are content-enabled applications,
for which unstructured content enhances the structured data they manage.

Most companies use many of these application types — and others such as
correspondence tracking or technical documentation management and publishing —
somewhere in their organization. These applications may be packaged solutions or
may be custom applications developed specifically for the company. Documentum 5
is the only enterprise content management platform that supports the complete
range of content applications. It enables companies to integrate their various content
applications across the enterprise, thereby increasing productivity and lowering total
cost of ownership by simplifying system management. The integration can even extend
to suppliers, distributors, and customers.

Figure 1–2. Content Applications Span the Enterprise

Documentum 5 Architecture:A Technical Overview 11

Enterprise Content Management

The Building Blocks of Enterprise Content
Management

Companies succeed based on how well they manage their information, getting it to the
right people at the right time. Everyone benefits from increased connectedness. The
Documentum enterprise content management platform provides a foundation for this
vision of a connected enterprise with the four key building blocks of enterprise content
management:

• Pervasive content management

• Complete content lifecycle

• Creation of content management applications

• Connected content management applications, completing the digital value chain

Pervasive Content Management

Pervasive content management is the ability to manage all content types anytime,
anywhere. Documentum 5 can store content files in all known formats, including
rich media formats, and is easily extensible to new formats. Documentum has
the ability to capture and natively manage virtually any type of knowledge —
documents, Web content, XML, rich media, fixed content (such as reports and records),
collaborative content (including instant messages, discussion threads, e-mail, and more).
Documentum integrates out of the box with many of the popular content authoring
tools used today to capture content. The Documentum platform handles all phases of
managing content, from creation, to management, to delivery, archival, and disposal, as
regulated by laws and corporate policy.

Pervasive content management also means working effectively with other components
of the infrastructure, such as the operating systems, programming tools, relational
database management systems, Web application servers, authentication services, and
enterprise applications such as ERP and CRM. Documentum connects seamlessly to
these systems and provides a distributed repository so that companies can access and
deploy their content any time, any place, around the world.

12 Documentum 5 Architecture:A Technical Overview

Enterprise Content Management

Figure 1–3. Pervasive Content Management

Managing the Content Lifecycle

The Documentum platform can manage content from the moment it is created or
captured all the way through to its ultimate destination. The objective might be
publishing product information to a corporate Web site, distributing engineering
specifications to subcontractors, circulating new sales incentives to field representatives
via wireless devices, or delivering invoices to customers. Ultimately, the end point might
be the authorized archival or disposal of content that is beyond its useful life.

How content is created and managed is just as critical as where it is published. While
content applications differ in the types of content they use, they share a common lifecycle
for the content. The lifecycle has four major stages:

1. Creating and capturing content

2. Managing content

3. Delivering content

4. Archiving content

Documentum 5 has core capabilities supporting each of these lifecycle stages, including
tools for collaborating on content and automating business process workflows.

Documentum 5 Architecture:A Technical Overview 13

Enterprise Content Management

Figure 1–4. The Content Lifecycle

Creating and Capturing Content

The first job of a content management system is to collect the relevant content and add
it to the corporate content repository. Content comes from a variety of sources, both
internal and external to the company.

Documentum 5 integrates with authoring applications such as Microsoft Office products,
Adobe publishing products, XML authoring tools, and CAD applications, enabling
application users to add and retrieve content files directly from content repository.
The integration uses standard protocols and interfaces such as WebDAV and ODMA.
Documentum Web Publisher provides a powerful tool for creating Web content as well
as managing it.

14 Documentum 5 Architecture:A Technical Overview

Enterprise Content Management

Figure 1–5. Integration with Authoring Tools

Documentum 5 also provides tools for aggregating and importing large volumes
of content from disparate sources, including ERP/CRM systems, e-mail systems
(such as Microsoft Exchange or Lotus Notes), and other enterprise applications. It
supports document scanning, on an ad-hoc basis or production scale, to convert critical
paper-based information into electronic content that can be managed as part of the
content management system.

Documentum provides an environment in which users can communicate, coordinate,
and collaborate as they develop content. Users can use virtual whiteboards,
threaded discussions, and instant messaging to work together, simultaneously taking
advantage of content management features to store and control the content they
develop. Documentum eRoom Enterprise delivers a universally accessible Web-based
collaborative environment that exposes content management services. Integrating
collaboration with content management allows distributed teams to more effectively
plan, strategize, make decisions, and build consensus as they design new products,
coordinate their supply chain, engage clients, and work on other key business initiatives.
eRoom is designed to capture and preserve project content as the project grows in scale
and scope. Users can easily save content to a Documentum repository and create a link
within the eRoom work environment, ensuring that content is securely stored while
providing controlled access to authorized users. Storing content in the repository also
enables users to apply content services such as workflow and lifecycle management or
automatically publish approved content.

Documentum 5 Architecture:A Technical Overview 15

Enterprise Content Management

Managing Content

The content repository is the foundation of the Documentum content management
system. The content repository is a secure storage area that provides organized access to
the content, regardless of the source of the content or its format.

Documentum 5 can store content files natively in all known formats, including rich
media or compound formats, and is easily extensible to new formats. The repository
tracks an extensive set of attributes or properties about each content item. These
attributes serve as metadata describing the content. The repository uses the metadata to
organize the content, and users can use it to search for content that is relevant to them.
The set of attributes stored for each item is configurable and fully extensible.

Each item in the repository is protected by powerful and flexible security that control
who can access the content and what level of access each person has. Documentum 5
can control access with user- or role-based security. Content can be encrypted in
the repository or when it is delivered to a user. Documentum 5 can secure content
beyond the repository with solutions (such as digital rights management and records
management, LDAP, SSL, and digital certificate support), essential for electronic
submissions and secure e-commerce.

Documentum 5 provides automatic versioning capabilities to control, manage, and track
multiple versions of the same content. It provides check-in and check-out capabilities
that protect documents during editing to prevent conflicting edits. It tracks major and
minor document versions. It can create renditions in multiple formats, such as PDF and
HTML, for delivery through any channel or device, and to automatically update these
renditions when the original document is modified.

Figure 1–6. Version and Rendition Management

Documentum can manage links between related content and treat content in multiple
formats as part of a single document, called a compound document or virtual document.
For example, a Web page might consist of HTML text, images, and a stylesheet; in turn,
the Web page might be part of a larger unit such as a product catalog. A Microsoft Office

16 Documentum 5 Architecture:A Technical Overview

Enterprise Content Management

document might include links to other Office documents, such as an Excel spreadsheet
embedded within a PowerPoint presentation. Virtual document management quickly
assembles information from across the enterprise into custom documents. For example, it
enables the quick assembly of electronic common technical documents (eCTDs), essential
to e-submission of new drug applications (NDAs). It automatically handles existing
links — when the PowerPoint document described above is added to the repository, the
linked Excel file is also stored. Any or all of a virtual document’s contained documents
can be assembled for publishing or perusal. Assembly and publishing services can
be integrated with popular commercial word processors and publishing tools. The
assembly can be dynamically controlled by business rules.

Figure 1–7. Virtual Document Management

Documentum provides the ability to automatically parse, validate, transform and map
incoming XML documents.

The Documentum content repository supports the scaling and administration tools
necessary for enterprise-wide data storage, including distributed physical repositories,
load balancing, backup and recovery, and auditing.

Delivering Content

Content delivery can take two forms, sometimes referred to as “pull” and “push.”
Documentum provides the means for users and content applications to access the
repository and “pull” content from it. It also provides a variety of publishing options
that “push” content to other forums from which users can access them.

Content applications have a heterogeneous population of users — from IT personnel
and developers to non-technical staff in many functional departments. Documentum 5
provides appropriate interfaces for each group: power users need a full-featured
interface to the content repository; content contributors need an intuitive interface that
makes sense in the context of the business applications they use; content consumers need
a straightforward way to search for relevant information in large repositories without
knowing how that information is organized or stored. Documentum products can make
content available through specialized client applications, portals, and integrations

Documentum 5 Architecture:A Technical Overview 17

Enterprise Content Management

with enterprise applications. Documentum also offers products for specialized content
applications, such as digital asset management, Web publishing, or document control
for compliance.

Content publication takes many forms in today’s enterprises. In addition to traditional
printed documents and electronic document sharing, vital content is delivered
electronically in a variety of forums, such as corporate Web sites, enterprise portals, and
business-to-business or business-to-consumer distribution. Documentum enables a
company to publish content through all of these channels, using the same source content.
For example:

• Documentum Site Deployment Services (SDS) retrieves a Web site from a content
repository and deploys the site to multiple servers or Internet service providers.

• Documentum Content Distribution Services provides a framework for distributing
content to people both inside and outside of the company firewall. People subscribe to
the content based on offers made available by the content provider. This product can
automatically inform interested parties about updates to a repository and forward
them the new or updated documents.

• Documentum Web Publisher enables non-technical users to create, manage, and
publish content to one or more multilingual Web sites. Users create Web content
in one of the many popular authoring tools with which Web Publisher integrates
or they can create Web content with the Web Publisher native XML editor. Web
Publisher uses workflows and lifecycles to manage Web content. During specified
states in a Web content lifecycle, Web Publisher transforms content to HTML, merges
the content with predefined Web page templates, and publishes Web pages to a
Web server.

• Documentum provides the full range of publication services for XML documents,
enabling companies to take full advantage of the power of rule-based XML
processing. It can automatically divide XML documents into individual entities
based on customer-defined rules. With its complete XSLT support, Documentum can
publish single-sourced XML documents into multiple formats.

Figure 1–8. XML Publishing

18 Documentum 5 Architecture:A Technical Overview

Enterprise Content Management

Archiving Content

Companies today need to be able to preserve content in a trusted, scalable, and
cost-effective way. Documentum provides a flexible architecture that enables integration
with any archival and storage system. Since the Documentum repository relies on a
customer’s underlying operating system and database, Documentum transparently
supports any storage system exposed through a file system interface and supported
by any of the relational databases that the Documentum repository supports. As a
result, Documentum customers can take advantage of any type of storage infrastructure
they choose, including JBOD, RAID, CD and DVD jukeboxes, optical laser disks, and
tape data storage as well as sophisticated networked storage systems such as network
attached storage (NAS) or storage area networks (SAN). Additionally, Documentum
can natively support storage systems exposed through a proprietary API such as EMC
Centera, a content addressed storage with built-in immutability and non-repudiation.

With companies required to meet a growing body of regulations governing electronic
information, the content in the repository must be classified and stored. A company
may be required to produce records on demand, recover deleted content, or prove
that missing records and content were disposed of in accordance with law and
corporate policies. Documentum’s record management features enable organizations to
cost-effectively archive or dispose of records after their administrative, regulatory, or
legal justifications have elapsed. Organizations can implement rules-based policies, set
event-based as well as absolute retention periods, and implement “holds” for suspending
the records review and destruction cycle.

Processing Content

Many content assets within an enterprise follow a consistent path through the content
lifecycle: content is created, reviewed, revised, and approved, then used and ultimately
superseded or discarded. Documentum can automate the stages in the content’s life
and the business processes for each stage. Workflows formalize the steps in a business
process; lifecycles define the business rules for changes that apply to content as it
moves through the stages of its life (such as Draft, In Review, Active, and Obsolete).
Documentum can define and automate business processes associated with creating and
distributing documents, including the ability to facilitate collaboration with outside
partners and suppliers. For example, organizations can automate document workflow
and lifecycle processes to enable compliance with records management policies and
ISO certification procedures. Applications can require users to electronically sign off a
document before passing the document to the next activity in a workflow or before
moving the document forward in its lifecycle.

Documentum 5 Architecture:A Technical Overview 19

Enterprise Content Management

Figure 1–9. Content Lifecycle Management

Documentum’s Inter-Enterprise Workflow Services extend automated workflow
processes to external participants, enabling companies to integrate partners into
cross-enterprise collaborations. Partners can exchange content over the Internet,
completely independent of their proprietary systems. They participate in workflows
and lifecycles when they receive and act on e-mail messages or when e-mail triggers
a workflow automatically at each partner’s organization. Inter-Enterprise Workflow
Services allow the company to maintain complete control of a workflow even when
associated tasks are performed by outside suppliers or partners. Additionally,
Documentum workflows can integrate with other workflow systems, including
enterprise business process management and EAI solutions such as BEA WebLogic
Integration or TIBCO BusinessWorks.

One of the most difficult aspects of maintaining a large knowledge repository is
organizing the information in a way that makes it easy for users to find. Users can locate
documents based on their location in the repository or on the values of its attributes. If a
document is in the wrong place or has incorrect attribute values, users may never find it.
Documentum provides automated content analysis, classification, and categorization,
which help extract information from unstructured documents and make it available for
users. It can perform a semantic analysis that determines what each document is about,
resulting in a list of the concepts discussed in that document. It can use the results of
the analysis to automatically set values of document attributes or link the documents
into appropriate locations.

20 Documentum 5 Architecture:A Technical Overview

Enterprise Content Management

Creating Content Applications

Documentum provides a complete, easy-to-use, consolidated development kit for any
type of application requiring content management capabilities. It offers many options
for integrating content management operations with existing client applications or
rapidly building new applications, whether they are C, C++, Visual Basic, Java, Web
server-based, or Web clients.

Documentum delivers pre-built content applications that can be configured or customized.
Many aspects of Documentum content applications are controlled by text-based or
XML-based configuration files, enabling customers to make significant changes to
system appearance and behavior without writing any programming code. For example,
customers can edit the text files containing the strings that appear in the user interface in
order to “brand” the application in line with their corporate identity. For more extensive
changes, customers can use Documentum developer tools to customize applications; for
example, they can develop new controls, components, or Java classes. Components of
the pre-built applications can also be integrated into new applications.

The Documentum repository includes a robust data dictionary, which is a collection of
information about the repository and the objects contained within it. Applications can
use the data dictionary to enforce business rules or provide assistance to users. For
example, the data dictionary could specify that the value for a particular attribute must
be unique, and applications can use that constraint when validating the data a user
enters. By using the data dictionary, developers can ensure that all of the enterprise’s
content applications use a uniform set of data validation criteria. The data dictionary
also enables the grouping of attributes into categories that automatically control how the
attributes are organized in the user interface.

Business logic encapsulated in core components can be exposed as Web services to
provide access through other applications. Web services are a natural mechanism for
integrating content management across systems, such as CRM, ERP, and portals.

Completing the Digital Value Chain

Documentum is a standards-based solution, making it straightforward to integrate
applications with the rest of the computing infrastructure. Documentum is the only
enterprise content management platform that provides the features necessary to support
the full range of content applications, enabling companies to integrate various functions
into a complete value chain. The digital value chain is the integrated set of applications
and processes — within the enterprise and extending to suppliers, distributors, and
customers — that support the creation, management, processing, distribution, and
archival of any kind of electronic content.

Documentum 5 Architecture:A Technical Overview 21

Enterprise Content Management

Figure 1–10. The Digital Value Chain

The Documentum platform enables customers to integrate all types of content with
packaged line of business (LOB) applications such as ERP and CRM applications. LOB
applications are typically designed for handling a specific type of structured data for a
specific purpose — for example, customer or inventory data. They usually have minimal
capabilities for managing unstructured content, which can be limiting for users who
often need to access, manipulate, or edit related unstructured content, such as invoices,
contracts, SOPs, or safety data sheets. Integrating Documentum with these types of
applications unifies the unstructured content across the enterprise with the structured
content these applications manage, enriching the solution they provide.

For example, content-enabling a CRM application can connect a customer’s purchasing
history (structured content) with the contracts and correspondence (unstructured
content) related to this customer. Because a customer service representative can instantly
access any and all information relevant to the customer, the representative can provide
more complete service, eliminate delays associated with searching for content, and offer
other purchasing opportunities.

By content-enabling packaged applications, customers can begin to realize some of
the most important benefits of enterprise content management, including increased
efficiency and reduced costs. Everyone across the enterprise gains the ability to access
and interact with all types of information in any format, regardless of which application
created that content. That makes users more efficient and effective. And because content
can be used and reused many times over for new and different purposes, the useful life
of content is extended beyond its original purpose. That increases the value of content
while reducing the cost to create it.

These benefits signal an evolution in content management from a departmental
application to an enterprise deployment as enterprise content management becomes a
distinct and essential layer in the technology stack, similar to the relational database
layer (RDBMS) or the application server layer. The content management layer will
ultimately become as important as the RDBMS layer because of the sheer volume of
unstructured content that organizations are managing and the value of unstructured
content to the entire enterprise.

22 Documentum 5 Architecture:A Technical Overview

Enterprise Content Management

Documentum backs up our commitment to this objective by investing significant
resources in development and integration tools. The tools enable organizations to
incorporate complete content lifecycle services in their corporate IT infrastructure stack.
Developers can access these services within their preferred development environment
and create content-based applications using the best programming language. And they
can leverage the pre-built connectors between Documentum products and the other
applications in the enterprise software stack, including portals, application servers, and
packaged applications. Implementing the enterprise content management layer brings
together all parts of the enterprise and, just as important, different organizations outside
the enterprise — enabling everyone to work together more efficiently. That’s when
Documentum begins to truly unite the world through content.

Documentum 5 Architecture:A Technical Overview 23

Enterprise Content Management

24 Documentum 5 Architecture:A Technical Overview

Chapter 2

System Architecture

“Architecture cannot be an afterthought.” — Howard Shao, EVP and Chief Technology Officer,
Founder of Documentum

This chapter provides an overview of the key components of the Documentum architecture.

The Four Layers of the Documentum ECM Platform

Conceptually, the Documentum platform consists of four major layers:

• The services layer, consisting of Documentum Content Server and a variety of
extended services, provides the content management functionality and serves as the
foundation for all other products

• The interface layer, consisting of Documentum Foundation Classes (DFC) and its
related APIs, provides communication between the services layer and the clients
that use the services

• The client layer, consisting of end-user products, developer tools, and integrations
with other systems, provides access to the content management functionality in the
context of particular business functions

• The application layer, consisting of products from Documentum, its partners, or
custom-built, provides the integrated applications that use content management
functionality as part of their business solutions

The first three layers comprise the Documentum platform, supporting the application
layer. Documentum also offers products that combine features from different layers to
provide vertical solutions.

Documentum 5 Architecture:A Technical Overview 25

System Architecture

Figure 2–1. Basic Documentum Architecture

Content Repository and Services Layer

At the base of the Documentum platform is the enterprise content repository and
Documentum Content Server, which manages the repository and implements the core
content management capabilities. Content Server makes these capabilities available to
clients and applications through the interface layer. Additional content management
services can be added by installing various extended content services offerings, such
as Content Transformation Services, Content Intelligence Services, Content Exchange
Services, and Site Delivery Services.

Documentum Content Repository

Documentum Content Server is the software that manages the content repository and
provides the fundamental content management capabilities. The Documentum content
repository uses an extensible object model to store content and its associated metadata.

The enterprise content repository that Documentum manages is an abstract repository
consisting of data stored in distinct physical sources; Content Server coordinates the
different forms of data to create the object-based repository. Documents are composed of
content files (the source file in its native format) and document attributes (also known
as metadata or properties), such as document owner, version, and creation date. These
attributes serve as metadata describing the content and the relationships between this
content and other objects in the repository. The repository uses the metadata to organize
the content, and users can use it to search for content that is relevant to them.

26 Documentum 5 Architecture:A Technical Overview

System Architecture

A Documentum repository can store its content files in any of these types of storage:

• In a directory structure in the server host’s file system or an external storage facility.
Content Server maintains its content store in a protected set of directories, so that
users do not have uncontrolled access to them from outside of the Documentum
system. Where security is paramount, the content can be encrypted using Trusted
Content Services

• In a relational database management system (RDBMS) as Binary Large Objects
(BLOBs) or data in varchar fields

• On a content-addressed storage device provided by vendors such as EMC or NetApp

• In an external storage area, such as a legacy system where content is outside the
direct control of Documentum

Users and developers access any of these storage areas in the same way, so the
underlying storage system is transparent. In fact, a given piece of content can move from
one storage area to another as part of its lifecycle without requiring any changes at all
to programming code or user navigation.

Document attributes are stored in tables in a relational database. The set of attributes
stored for each item is configurable and fully extensible. It can include attributes
required to have a single value, such as the document’s globally unique identifier, and
attributes that can have multiple values, such as keywords describing the content.

In addition to the content files and the attributes describing them, the repository includes
a set of full-text indexes created by Content Server’s embedded Verity full-text search
engine. The full-text indexes enables content-based searching of the repository. When a
document is added to the repository, the associated content files are added to the storage
area’s index the next time the index is updated. Indexing a document enables users to
search not only the data from the document’s content file but also selected attributes.

Figure 2–2. Content Repository Structure

Content Server integrates the content files and associated metadata into document
objects and provides object-based access to the resulting documents. From the point of

Documentum 5 Architecture:A Technical Overview 27

System Architecture

view of a client application, there is a single repository whose implementation details are
irrelevant. The server treats the content files and metadata as part of a single entity and
handles updates to the document object as a single transaction: it updates both elements
in concert or updates neither of them. The server automatically updates the index entries
as well, ensuring that the three types of data cannot get out of synchronization.

Content Server enforces proper security measures to ensure that only authorized users
can access the content files, metadata, or indexes. No user or application can bypass the
server to access the data directly through the file system or database software.

Content Server can also store information that is not directly related to particular content.
Developers can register database tables with Content Server, thereby making them
available for querying and updating through Content Server facilities.

Large enterprises can require a distributed repository or multiple Documentum content
repositories. For example, a global company might have a Documentum content
repository in each geographical region, with the goal of storing content locally to the
users who work on it. Content Server provides the building blocks for implementing
distributed environments in a way that provides universal access while preserving
system performance. The platform is scalable at all levels, from the design of the data
structures in the database through the deployment of server host machines to the
distribution of sites in far-flung locales. The repository still appears to client applications
as a unified whole despite the fact that its components are distributed across the globe.

Figure 2–3. Globally Distributed Content Repository

28 Documentum 5 Architecture:A Technical Overview

System Architecture

Content Objects

In an object-based system like Documentum, an object is a component consisting of
both data (content files, attributes, and relationships in the case of documents) and
instructions for the operations available to be performed on that data (called methods).
Just like the set of attributes, the set of methods for an object is configurable and
extensible using Documentum development tools. Developers can create new object
types that behave exactly as their specific business needs require.

Figure 2–4. Documentum Document Object

Client applications interact with document objects by calling their methods. From the
client application’s point of view, the methods are the same regardless of the format of
the underlying content file. The encapsulation of the differences between formats enables
content management applications to remain independent of formatting concerns.

Content Server is an object-based system: everything that users manipulate —
documents, folders, security profiles, business processes, and so on — is stored and
managed by Content Server as an object. Even the structural elements that define the
repository itself are objects, including location objects, format objects, and relationship
objects. The Documentum object model is the structure by which the server organizes
the content and control mechanisms of repositories.

In object-based systems, object classes are organized into a hierarchy, which each
object inheriting attributes and behavior (methods) from its “parent” in the tree. In the
Documentum object hierarchy, the parent for most of the objects developers manipulate
is SysObject. Objects derived from SysObject have SysObject attributes and methods as
well as attributes and methods specific to that type of object.

All core enterprise content objects in a Documentum repository — documents, folders,
cabinets, and others — are subtypes of SysObject. When this paper refers to a content
object, it is referring to a SysObject.

Documentum 5 Architecture:A Technical Overview 29

System Architecture

Figure 2–5. Documentum Object Hierarchy and Sample Attributes

Content Server

The core services offered by Content Server can be divided into four categories, each of
which builds on the previous categories:

• Repository services, which manage the data structures underlying the content and
the repository itself

• Library services, which manage content objects

• Core content management services, which manage relationships between content
objects in the repository, transforming them into units of business intelligence

• Process automation services, which manage changes made to the content as part of a
business process

These services are available as methods of one or more Documentum object types.

Repository Services

The coordination of data from multiple sources into a content repository is an example
of Content Server’s repository services. Content Server integrates the data in a way
that ensures its integrity and security. It follows a transactional model, making sure
not to commit changes in one place if it cannot make the corresponding changes in all
places. The architecture ensures that Content Server is fault tolerant. Content Server also

30 Documentum 5 Architecture:A Technical Overview

System Architecture

includes the tools necessary to administer the underlying data sources, including a
complete administration application, auditing and tracking facilities, and replication and
load balancing processes for distributed configurations.

Content Server stores and maintains a data dictionary, which is a collection of
information about the repository and the objects contained within it. Applications can
use the data dictionary to enforce business rules or provide assistance to users. For
example, the data dictionary could specify that the value for a particular attribute must
be unique, and applications can use that constraint when validating the data a user
enters. Or, the data dictionary could contain a list of possible values (either a fixed list or
a query returning a list) that applications can display to users as the available choices.
The data dictionary can store error messages, help text, and user interface labels, all of
which are available to content management applications.

Content applications use a name server called a DocBroker to identify the Content Server
repositories that are available to it. When a client application wants to connect to a
repository, the client contacts the DocBroker and requests the information it needs to
connect with a server for the requested repository. The address of the DocBroker is
identified in a configuration file (dmcl.ini) on the client machine. The DocBroker sends
back the IP address for the host on which such a server resides and the port number
that the server is using. If there are multiple servers for the repository, the DocBroker
returns connection information for all of them, along with a proximity value indicating
the server’s relative distance from the client. The client session uses that information to
choose a server and open the connection.

Data security is a critical consideration for enterprise content. Content Server requires a
password for access to the repository, but does not store the password. It offers different
and extensible options for how it authenticates users, such as contacting the operating
system or an external directory via a Lightweight Directory Access Protocol (LDAP)
service. If a user needs to open another session with the same repository, the application
can use a ticketed login to avoid sending the user’s password. When the first service call is
made, the service requests that the server generates a login ticket and sends it back with
the result message. The client then retrieves the ticket from the response and uses it in
lieu of the password when establishing a new session with the repository.

Documentum 5 Architecture:A Technical Overview 31

System Architecture

Figure 2–6. User Authentication

Library Services

Where repository services relate to the underlying structure of the repository, library
services relate to the content objects. Library services transform the content repository
into a library, controlling user access to each object in the repository. Every object has an
associated access control list (ACL) or permission set that defines which users, groups,
or roles can access the object and which operations they can perform. Content Server
enforces seven levels of base object-level permissions and five extended object-level
permissions. Organizations can define roles with specific application responsibilities
and permissions.

Content Server provides check-in and check-out services to ensure that users with
permission to edit content do not overwrite each other’s revisions or make incompatible
updates. It also has automatic versioning capabilities for controlling, managing, and
tracking multiple versions of the same content. Each distinct version is an object with its
own version label. Content Server uses the version labels to create a “version tree” that
captures the relationships between the versions.

32 Documentum 5 Architecture:A Technical Overview

System Architecture

Figure 2–7. Version Tree

Customers can establish many types of relationships between objects in the Documentum
repository. Content Server includes several types of system-defined relationships, such
as the relationship between a document and a note object representing annotations to
the document or the relationship between a document and the workflow and lifecycles
assigned to it. In addition, users can define custom relationships. For example, a
relationship could be defined between two document types such that a document of
one type is automatically updated when a document of the other type is updated.
Developers can define this type of relationship and write procedures to manage it.

Figure 2–8. Object Relationships

Documentum 5 Architecture:A Technical Overview 33

System Architecture

Content Management Services

What constitutes a document, as a unit of content that is processed together, depends
on the business process the content plays a part in. From a business perspective, a
“document” may well consist of multiple components in different files or formats.
Therefore, content management systems need to be able to treat multiple objects in the
repository as part of the same overarching document. Virtual documents are an example
where Content Server manages the relationship between objects so that they appear to
client applications as a single entity. Content Server’s core content management services
provide other examples: renditions, annotations, and version trees.

A rendition is an alternate representation of the content of a document, differing from
the original in its format or its usage. Content Server can store content in the repository
in any number of renditions; for example, a document might be stored as a Microsoft
Word file, a Word file in Macintosh format, an Adobe Acrobat PDF file, and an HTML file
with associated image files. A rich media file might have a full-length video rendition,
a thumbnail rendition (storyboard), and a low-resolution rendition. Like versions, all
renditions are treated as part of the same document. Content Server can automatically
generate renditions of content using converters that are available through Documentum.

Annotations are comments that a user attaches to a document or other content.
Throughout a document’s lifecycle, and often even after it has been published, people
may need to record editorial suggestions and comments. The ability to attach comments
to a document without modifying the original text is very helpful. Annotations are
implemented as note objects, which Content Server associates with the content objects
they relate to.

A feature of both content management and process management services, virtual
documents are a way to link individual documents into one larger document. An
individual document can belong to multiple virtual documents. When the individual
documents change, the change appears in every virtual document that contains that
document. (Content Server also supports assemblies, which are virtual documents built
from specific versions of their component documents, so that future changes are not
included.) Any or all of a virtual document’s contained documents can be assembled for
publishing or perusal. Content Server can integrate the assembly and publishing services
with popular commercial word processors and publishing tools. The assembly can be
dynamically controlled by business rules.

The core content management services enable companies to create rich repositories with
an internal structure supporting the native structure of complex documents and logical
organization of content based on actual business processes. To help client applications
search for content within the repository, Content Server supports Document Query
Language (DQL). DQL is a superset of SQL that provides a common, unified query
language for all objects in the content repository. It enables you to search for content
based on its attributes (including attributes it inherits from objects above it in the object
hierarchy), the full text of its content files, its relationship to other repository objects, or a
combination of these options. DQL respects the security of the content, returning only
objects that the user is authorized to see. Content Server has a built-in query optimizer
for best performance.

34 Documentum 5 Architecture:A Technical Overview

System Architecture

XML Content Management Services

Documentum provides a rich set of services for dealing natively with XML content
throughout the content lifecycle. All standard Documentum services are available for
XML content, as well as special XML processing.

XML is used for many purposes, and Documentum enables customers to create different
XML schemas to represent different document types such as contracts, technical
manuals, and catalogs. Each document type is likely to require distinct processing
based on their required business behavior. Documentum provides a mechanism known
as XML applications that allows highly configurable processing of XML documents of
different types. There are no limitations to how many different XML applications an
implementation can have.

Figure 2–9. XML Content Management

Documentum Application Builder provides interfaces for creating XML applications
without any coding. Configurable aspects of an XML application include:

• Validation requirements, which determine whether the XML content is checked for
well-formedness or is validated against a schema or document type definition (DTD)

• “Chunking” rules, which control how XML documents are divided into reusable
component objects and stored as virtual documents

• Link recognition and parsing, which enables the application to recognize linking
constructs in XML content and to automatically import, manage, and patch linked
resources

• Handling of parsed entities, ndata entities, and base64–encoded content

• Automatically applying Documentum management features to XML “chunks,” such
as assigning object types, setting security, creating folders, populating metadata,
or assigning lifecycles

Documentum 5 Architecture:A Technical Overview 35

System Architecture

Documentum XML applications can also store and manage related XML files such as
stylesheets, DTDs, schemas, editor stylesheets, and customizations. Documentum
manages the distribution of these supporting files to clients as required.

XML applications work in conjunction with all of the Documentum library service
operations. Whenever an XML file is checked in or checked out from the repository,
Documentum invokes the XML processing necessary to parse or reconstruct the complete
XML document. With Documentum’s built-in XSLT engine, XSL transformations can be
invoked directly from the repository, with the results stored back in the repository.

Documentum provides additional search capabilities for XML content. DQL has the
ability to search within elements and attributes in XML content. XDQL is an XML
interface to the DQL Query interface that returns search results as XML streams. XDQL
also supports applying XSL stylesheets to returned results. One common use of XDQL
is calling it from within XSL stylesheets, enabling the transformation to dynamically
retrieve content and metadata from the repository.

Process Automation Services

The process automation services provided by Content Server allow companies to define
and enforce business rules and policies while users create, manipulate, or access content.
They promote streamlining and optimization of business processes. The primary process
automation features of Content Server are workflows and lifecycles.

A workflow formalizes and automates a business process, such as an insurance claims
process or an engineering development process. The model supports both production
and ad hoc workflows, enabling customers to manage the flow of information and
tasks within and beyond the enterprise. Workflows can formalize long-lived business
processes spanning days, months, or years. They can apply to individual documents,
groups of documents, and virtual documents. Like all Content Server elements,
workflow definitions are stored as reusable objects. After the business process is
formalized in a workflow definition, users can use the definition to repeatedly perform
the business process with different content.

Because a workflow’s definition is separate from its runtime instantiation, multiple
workflows based on the same definition can be run concurrently. Workflows can
describe simple or complex business processes. A workflow can be serial, with activities
occurring one after another, or parallel, with all activities happening at the same time,
or can combine serial and parallel activity sequences. It can include explicit flows for
exception or rejection cases as well as normal “forward” progress through the business
process. The workflow engine determines the path that content takes through the flow
by evaluating data-driven transition conditions after each activity.

Activities can generate work items in the Inboxes of the activity’s designated performers.
The designated performers can be specific users or roles that are dynamically resolved
at runtime, such as the manager of the user who initiated the workflow. Work items
represent work to be performed on the objects being routed through the workflow.
Users with appropriate permissions can modify in-progress workflows and dynamically
change the workflow routing. Workflow and event notifications are automatically issued
through standard electronic mail systems while documents remain under secure server
control in the repository.

36 Documentum 5 Architecture:A Technical Overview

System Architecture

Figure 2–10. Documentum Workflow

Many content assets within an enterprise have a recognizable life cycle. A document is
created, often through a defined process of authoring and review, and then is used and
ultimately archived or discarded. Documentum Content Server’s lifecycle management
services automate the stages in a document’s life. A lifecycle object identifies a set of
states that define the stages in a document’s life. A change from one state to another is
governed by business rules. The rules are implemented as requirements that the object
must meet to enter a state, actions to be performed on entering a state, and actions to be
performed after entering a state. Change of a lifecycle state can also be associated with an
automatic change of document’s access control, trigger workflows, generate a rendition,
modify the document’s attributes, or change its physical location.

For example, a typical lifecycle for Standard Operating Procedure (SOP) document has
the states draft, review, rewrite, approved, and obsolete. Before an SOP can move from
the rewrite state to the approved state, business rules may require the SOP to be signed
off by a company vice president and converted to HTML format, for publishing on a
company Web site. After the SOP enters the approved state, an action can send an e-mail
message to the employees informing them of the SOP’s availability.

Lifecycles identify states that documents can be in; they do not define when or how a
document is promoted into each state. Workflows, on the other hand, are active. The
defined business process is a connected network of activities, including information
about who performs each activity and when each activity is performed. A document can
participate in multiple workflows at the same time, but can have only one lifecycle.

Workflows and lifecycles automate business processes and policies related to specific
content within the repository. Content Server also supports the automation of other
required processes, such as administration tasks. Agents can be created to run jobs on a
defined schedule. The jobs run in the background and generate trace logs that record
their activity.

Documentum 5 Architecture:A Technical Overview 37

System Architecture

Extended Services

Documentum extended services products extend the capabilities of Content Server
beyond its core content management services. They can extend any aspect of the content
management framework: the content files (Media Services), the attributes (Content
Intelligence Services), or the content capture and delivery (Content Exchange Services
and Site Delivery Services).

Media Services

Media Services is server software that integrates with Content Server to allow
Documentum to convert content into other file formats. Media Services provides
value-added management capabilities for specific rich media formats such as images,
audio, video, and complex data formats of specialized applications including Quark
QuarkXPress, Adobe InDesign, and Microsoft PowerPoint.

Media Services includes the following major components:

• Media Server, which provides the framework for file format analysis, property
extraction, thumbnail creation, and transformation. It provides robust queuing and
application monitoring of Media Plug-ins.

• Media Plug-Ins implement file format-specific capabilities to identify and extract
properties, such as height, width, color mode, and compression, and generate
thumbnails and low-resolution renditions of media objects. The plug-ins can convert
files from one format to another (for example, from TIFF to JPEG, or from WAV to
MP3). Plug-ins also provide users with the ability to perform transformations such
as resizing, flipping, or rotating an image.

• A software development kit (SDK) allows customers and system integrators to create
additional plug-ins for other formats, to extend the Media Services capabilities for
specific solutions.

• Thumbnail Server, which is a dedicated server for secure, high-performance delivery
of thumbnails directly to a browser from a Documentum repository. Applications
retrieve the thumbnails from the repository as needed. The thumbnails are stored in
file stores that are defined as the thumbnail storage areas.

• Streaming Server integration provides low-latency delivery of video and audio files
directly from a Documentum repository. Third-party streaming servers integrate
directly to Content Server file stores.

38 Documentum 5 Architecture:A Technical Overview

System Architecture

Figure 2–11. Media Services Architecture

Documentum provides plug-ins for most commonly used file formats and
transformations, such as:

• Transforming images into other formats

• Performing image manipulation such as cropping, changing dimensions, or changing
the color profile

• Transcoding video into Web-ready formats

• Applying optical character recognition to scanned documents and converting them
into full-text indexed PDF files

• Building a new PowerPoint presentation from individual slides contained within
other presentations already in the repository

The capabilities of Media Services can be accessed in a number of ways. A user may
request a transformation on demand through a Documentum client, or a workflow
task can request a transformation to include automated conversion of content as part
of a business process. When a user adds a rich media object to the repository, Content
Server recognizes its format as rich media. Content Server adds a processing request
into the queue for Media Services. The Media Server retrieves the request and sends
it to the appropriate plug-in for processing. The plug-in generates media properties,
thumbnails, low-resolution renditions, generates storyboards if applicable, and performs
transformations if requested. When the plug-in processing is complete, the Media Server
updates the original objects, adding attributes and alternate renditions if necessary. The
results of transformations are stored back into the repository, either as a new rendition of
the source object or as a brand new object. When a new object is created, Documentum
automatically creates a relationship between the source and derived objects, to allow the
user or an application to track how and when the derived object was created.

Documentum 5 Architecture:A Technical Overview 39

System Architecture

Content Server stores thumbnails in a special file store that is shared with the Thumbnail
Server. The Thumbnail Server is a server that uses Java servlets to manage thumbnail
representations and HTTP technology to accelerate the display of thumbnail images in
Web client applications.

With streaming server integration, when content in a streaming media format is checked
into the repository, Content Server recognizes the format and figures out how the object
should be processed and where it should be stored. The Content Server stores the
streaming media in a separate file store from which the media can be streamed directly
to the client.

Content Intelligence Services

Content Intelligence Services (CIS) uses an independent server to analyze documents in
a Documentum repository and extract a list of properties that describes each document.
These properties can describe any aspect of the document for which CIS can extract or
derive a value: its physical characteristics (such as file size or format), its repository
attributes (such as object type or version number), metatags from inside the document
(such as title or author), or custom properties. CIS performs a semantic analysis that
determines what each document is about, using a customized taxonomy that lists the
concepts to look for and identifies the evidence for the concepts.

When CIS is done analyzing a document, it has a list of the concepts discussed in that
document. It can use any of the information it extracts in order to automatically set
document attributes or link the document into appropriate locations in the repository.
Extracting information from the document content and adding it to the document’s
attributes transforms unstructured data into searchable structured data. Because CIS
adds attributes programmatically, they make consistent use of a standard vocabulary.

Content Intelligence Services goes through several steps to analyze a document it
processes:

1. CIS retrieves a document from the Documentum repository. Based on information
from the physical properties of the file itself, it constructs a list of property-value
pairs describing the document.

2. CIS determines the file format of the document, then uses an extractor for that format
to extract additional metadata properties and add them to the list of property-value
pairs.

40 Documentum 5 Architecture:A Technical Overview

System Architecture

Figure 2–12. Extracting Information From a Document With Content Intelligence Services

3. CIS breaks up the document content into individual paragraphs and converts it
into a normalized XML format.

4. CIS uses the taxonomy definition to perform a conceptual analysis of the
XML-formatted document content. Based on the evidence it finds in the document,
the server creates the concept list.

Figure 2–13. Conceptual Classification

5. CIS updates the repository based on the results of the analysis, setting document
attributes, linking the document to new locations in the repository, or both.

Documentum 5 Architecture:A Technical Overview 41

System Architecture

Content Exchange Services

Content Exchange Services automates content exchange and cross-enterprise
collaboration. It consists of three major areas:

• Content Aggregation Services — Collecting content from multiple sources,
normalizing it, and storing it in the central content repository

• Content Distribution Services — Distributing content from the repository to multiple
subscribers based on business rules

• Inter-Enterprise Workflow Services — Integrating people external to the organization
into a business process involving content from the repository

Note: In Documentum 5.2, the features of Content Exchange Services are provided
through Documentum Content Distribution Services and Documentum Inter-Enterprise
Workflow Services. The content aggregation features are not yet generally available.

Content aggregation involves a scheduled agent that searches possible sources for
relevant content. It can retrieve content from a variety of sources, such as file systems,
Web sites, or databases. When the aggregation agent finds content that needs to be
added to the repository, it follows these steps:

1. It retrieves the content using standard protocols such as HTTP, ICE, or SOAP.

2. It determines the format of the content and performs any transformations necessary
to prepare it for the Documentum repository. The set of available transformations
is configurable and extensible.

3. It adds the new content to the appropriate location in the repository.

Once the content is saved in the repository, all of the content management services are
available for processing it. In many cases, the new content has a workflow process
associated with it.

42 Documentum 5 Architecture:A Technical Overview

System Architecture

Figure 2–14. Content Exchange Services

Documentum Content Distribution Services has two major components: a Content
Distribution Services server (CDS server) and multiple subscribers. CDS server monitors
one or more content repositories for updates, packages the new or updated content,
and distributes it to subscribers. The server also manages the list of subscribers: their
privileges, which content each subscriber is interested in, and how and where to deliver
the updates. The subscriber accepts content packages from CDS server and updates its
local content repository as appropriate.

A CDS server serves any number of subscribers. The server can offer content from
Documentum repositories or Site Caching Services repositories, from relational
databases, or from file-based repositories.

Subscribers can receive content using one of three delivery protocols:

• Information and Content Exchange (ICE), an industry-standard message protocol
for content distribution

• File Transfer Protocol (FTP), the Internet standard for simple file transfers

• E-mail using Internet standard Simple Mail Transfer Protocol (SMTP)

Documentum Content Distribution Services includes ICE-compliant CDS client software
that a distributor can distribute to its subscribers. However, subscribers need not use the
CDS client software to receive content through FTP or e-mail.

A content distributor may want to modify or enhance the content before delivering
it to subscribers. For example, they might add a header to each document with their
company logo or a date stamp. Content Distribution Services enable modification of
the offer content using templates. A template contains instructions for manipulating
offer content, which CDS server performs before sending the content to a subscriber.
Content Distribution Services supports JSP templates and XSL transformations for XML
documents.

Documentum 5 Architecture:A Technical Overview 43

System Architecture

Inter-Enterprise Workflow Services (IWS) is an ebXML-ready multi-protocol server
that enables workflow processes to be shared with internal and external systems and
individuals. With IWS, Documentum workflows can be extended across a company’s
firewall to include business partners. IWS also enables integration of Documentum
workflows with workflow engines, including EAI and BPM systems as well as with
workflows from other enterprise applications. It leverages open standards such as XML,
SMTP, and HTTP/S to enable easy integration with other systems and to allow partners
to exchange data over the Internet safely and securely. Partners participate in workflows
when they receive and act on e-mail messages, or when e-mail triggers a workflow
automatically at each partner’s organization. When security is critical, Inter-Enterprise
Workflow Services encrypts content through a secure socket layer (SSL) and supports
digital certificates to authenticate users and content.

Figure 2–15. Inter-Enterprise Workflow Services

Site Delivery Services

Documentum Site Delivery Services combines two Documentum products — Site
Caching Services and Site Deployment Services — to publish content to multiple Web
sites.

Documentum Site Caching Services provides a high performance repository for content
delivery to Web applications. This repository serves as a cache for published content,
allowing Web site managers to use the versioning, workflow, document lifecycle, and
other content management capabilities of Content Server to maintain Web content. The
Web site manager identifies groups of documents to publish to the Web, which version
and format to publish, and when to publish them. Updates are staged in a way that
prevents version inconsistencies.

In addition to publishing content files to a Web site, Site Caching Services can optionally
export document attributes to a database on the Web server. Application servers can

44 Documentum 5 Architecture:A Technical Overview

System Architecture

access the attributes and provide application and personalization services based on the
data. For example, they could insert the attributes into HTML metatags in the content
files themselves, categorize the content based on their attributes, or personalize the
content you display to different users. For example, a Web site for music lovers might
classify documents by type of music. Classical music lovers see content related to
symphony orchestras, while country music fans see content related to country singers
and groups.

Figure 2–16. Publishing to a Web Site With Site Caching Services

The Site Caching Services software is composed of two separately installed components:
source software and target software. The source software is installed on a Content Server
host machine. The target software is installed on a Web site host. The target software can
be installed on multiple hosts, allowing a single repository to support multiple Web sites.

When publishing is initiated, either on demand or as part of an automated publication
schedule, the Site Caching Services source software connects to the repository and locates
the Web publishing configuration to use for publication. It queries the repository for the
content it needs to publish, retrieving the content files and creating attribute files (in
XML format) if that option is selected. The source software writes the files as an export
data set on the file system of the Content Server host machine.

After the content files and attributes are exported from the repository, the source software
connects to the Web server host as a transfer user. Site Caching Services can connect using
the HTTP protocol, which does not encrypt data, or the HTTPS protocol, which encrypts
data and is more secure. When the connection to the Web server host is established, Site
Caching Services transfers the export data set to a directory on the Web server host,
creating a Site Caching Services repository on the target machine. From here, the target
software copies the content files to the Web site (in a directory structure that corresponds
to the repository folder structure from which the files were published) and updates the
attributes database on the Web server using the information from the attribute files.

The Site Caching Services repository on the Web server is available to other applications,
not only the target Site Caching Services software. For example, another Documentum
services offering, Site Deployment Services, retrieves the Web site from the Site Caching
Services repository and deploys the site to multiple servers or Internet Service Providers.

Documentum 5 Architecture:A Technical Overview 45

System Architecture

Site Deployment Services can be configured to automatically deliver content on a
scheduled basis, synchronizing deployment to any number of global Web servers.

Figure 2–17. Site Deployment Services Builds on Site Caching Services

46 Documentum 5 Architecture:A Technical Overview

System Architecture

Interface Layer

Clients and applications use the interface layer to communicate with Content Server
and interact with the content repository. The interface layer consists of Documentum
Foundation Classes (DFC) and a number of standard interfaces built on top of DFC.
Collectively, these products form the Documentum application programming interface
(DAPI).

Figure 2–18. Documentum Application Programming Interface (DAPI)

Documentum Foundation Classes

Documentum Foundation Classes (DFC) represents the richest API exposing all
Documentum functionality. DFC provides an object-oriented framework for accessing
the capabilities of Content Server. DFC exposes the Documentum object model as an
object-oriented client library for content management applications to use. It is an API
that can be used from a host of applications, including those developed in Java, Visual
Basic, C#, and C++.

DFC is implemented as a set of Java classes and interfaces, along with a Java-COM
bridge for accessing DFC via COM from Visual Basic or Visual C++.

Every computer running an application that accesses Content Server has a copy of the
DFC software running on a Java Virtual Machine (JVM). The application on the client
machine performs a method call through DFC, which translates the call into the Content
Server’s native API. Content Server instantiates the object, executes the method call, and
returns the result to the client application.

Documentum 5 Architecture:A Technical Overview 47

System Architecture

Figure 2–19. Simple Client and Server Architecture

Applications access Content Server through DFC using a client object. Creating a client
object loads the necessary shared libraries. The client object interface then serves as a
factory for session objects, which represent connections to the repository. The application
creates new repository objects or obtains references to existing objects through the session
interface. Programmers familiar with the standard Java database connectivity package,
JDBC, will see the similarities between that programming model and the DFC model.

Documentum Business Object Framework

Documentum also provides a way to extend DFC using the Documentum Business
Objects Framework (BOF). Documentum Business Objects Framework provides a
framework and a methodology to develop reusable business logic components called
Business Objects. This framework is built into DFC and accessible from applications
written using DFC. It is designed to provide the ability to develop pluggable
components, each component implementing one or more middle-tier business rules.
BOF can implement business logic in reusable business object components that can be
plugged into middle-tier or client applications.

BOF enables programmers to develop highly reusable components that can be shared
by multiple applications. For example, a catalog application would likely include a
business object representing a product. The product business object has a number of
attributes, such as the product name and SKU number, as well as a number of methods
that implement the specific handling of products in the organization. For example, the
Update method knows where product information is stored in the content repository and
can keep it all synchronized. It can also maintain links to related information, such as the
manufacturer data. All of these details are hidden from the application using the product
business object. The business object provides a clearly defined high-level interface that
the developer of a catalog application can easily understand. Once the product business
object is created, it can be incorporated into other business objects such as a catalog object.

48 Documentum 5 Architecture:A Technical Overview

System Architecture

Figure 2–20. Product Business Object

There are two types of Documentum Business Objects, type-based business objects and
service-based business objects. A type-based business object can extend a Content
Server persistent object type and extend its capabilities by providing new methods for
those types and allow overriding of existing methods. A type-based business object
enables developers to define type-specific behavior without the need to customize each
client type — the same business object can be used with Webtop- or Desktop-based
applications. A service-based business object provides methods that perform more
generalized procedures that are not usually bound to a specific object type or repository.

At any level, a method of a business object can be called by other DFC-based applications.
JSP, ASP, Visual Basic, and other languages all have access to the business objects.

Web Services

DFC and BOF enable developers to encapsulate custom business logic that can be
exposed as Web services. They provide a way to call functions on other computers across
the intranet or World Wide Web. For example, a CRM system can communicate with
Documentum through Web services. For Documentum customers, this means broader,
industry standard access to content management functionality.

Developers can create their own services on our platform. Developers work with their
preferred development environments, toolkits, and application servers to develop
Web services over the Documentum API. Web services can be deployed on a Web
server, where they are available to any networked client — a desktop application, a Web
application or portal, or even another Web service or remote client/system.

For example, a BOF service could advertise its location so it can be found from remote
locations across the Internet. One Web Services standard component, Universal
Description, Discovery, and Integration (UDDI), provides the ability to register the
service for discovery. Once the remote computer locates the service using UDDI, it sends
a remote function call to the service using the Simple Object Access Protocol (SOAP).
Unlike the binary protocols used with RPC and RMI, which are also remote function
calling protocols, SOAP uses XML and HTTP to transfer parameters and return results
in the form of SOAP Envelopes. The SOAP Envelopes were designed so that they can
carry content in various forms.

For further details about Documentum support for Web services, refer to the technical
white paper Developing Web Services with Documentum.

Documentum 5 Architecture:A Technical Overview 49

System Architecture

Standard-Based Interfaces

Documentum provides a number of standard interfaces in addition to the DFC API,
simplifying access to the repository from authoring applications, application servers, and
other components of the enterprise infrastructure. The standard interfaces include:

• ODBC and OLEDB — Many reporting tools, such as Crystal Reports and Microsoft
Access, leverage Microsoft data access protocols for communicating with the
Documentum repository using Documentum ODBC Reporting Services.

• JDBC — Many application server applications use the standard Java data access
protocol to access content in the Documentum repository through Documentum
JDBC Services.

• WebDAV — Documentum WebDAV Services provides a WebDAV server that enables
WebDAV-aware applications, such as Adobe Photoshop and Documentum Desktop
for Macintosh, to use this protocol to communicate with the Documentum repository.

• FTP — Documentum FTP Services is a FTP server for the Documentum repository
that enables tools such as Macromedia Dreamweaver to integrate with the repository
using the Internet-standard file transfer protocol.

Client Layer

The client layer consists of basic applications for users to access the Documentum
repository. It includes end-user interfaces, administrator tools, and integrations with
popular authoring tools and enterprise applications.

Applications on the client layer are built from reusable components that build on
the content management services available from lower layers in the architecture. A
Documentum client application is a collection of components that work together to fulfill
a business purpose. The same components may appear in other client applications or as
portlets in an enterprise portal. Because components of both Microsoft Windows-based
applications and Web-based applications share the repository’s data dictionary and
business objects, developers and users can be sure of consistent results from all client
applications.

Microsoft Windows-Based Applications

Documentum Desktop is a Microsoft Windows application that gives end-users
access to one or more Documentum repositories and exposes all enterprise document
management capabilities. It is integrated with Windows Explorer, presenting repository
contents in an interface parallel to Explorer’s access to file-system contents.

50 Documentum 5 Architecture:A Technical Overview

System Architecture

Figure 2–21. Documentum Desktop

The functionality of Documentum Desktop is made available through COM components.
Some of the components are written in Visual Basic, and the source code is provided. A
workstation running Documentum Desktop has a copy of DFC, which the components
use to communicate with one or more Content Servers.

Documentum Desktop also provides integration to popular third-party applications,
such as Microsoft Office, to allow them to request content management services directly
from the application’s user interface. Documentum Desktop includes these integrations
among others:

• Windows Explorer

• Microsoft Office

• Microsoft Outlook

• Acrobat Business Tools and Exchange

• Arbortext Epic and other XML editors

Developers can customize Documentum Desktop components or use the components
in custom applications.

For activities that do not require immediate interaction with Content Server,
Documentum Desktop offers the option to “work offline.” This feature enables users to
download content from the Documentum repository to their local machine and work on
them while disconnected from the repository. When they reconnect to the repository, the
system synchronizes the offline content with the matching objects in the repository. The
synchronization process updates the repository with any changes the user has stored on
the local machine.

Documentum 5 Architecture:A Technical Overview 51

System Architecture

Authoring Integration Services (AIS) provides integration with content authoring tools
to Documentum on both Macintosh and Windows platforms. AIS includes a server
component that allows network drive access through a client’s operating system. This
server allows the operating system to treat the Documentum repository as a file system
without compromising its security. From the authoring tools’ point of view, they are
reading and writing file from a disk. The AIS server is the primary access point for
browsing, reading from and writing to the Documentum repository.

Additional client side development provides enhanced Documentum-specific features
including import, check out, check in, metadata update, and version control. This
development is achieved through the unified client framework. The unified client
framework provides a mechanism in which client applications can interact with
Documentum to utilize common content management functions such as metadata
assignment, versioning, and lifecycle initiation.

Documentum Web-Based Applications

Documentum Webtop is a Web-based application that gives end-users access to one or
more Documentum repositories. It provide a user environment similar to Documentum
Desktop, running through a browser rather than Microsoft Windows Explorer.

Figure 2–22. Documentum Webtop

Webtop includes a branding service that enables customers to customize the look of their
application user interfaces. The branding service manages the user interface appearance
using themes, which incorporate images, icons, and cascading stylesheets. The user

52 Documentum 5 Architecture:A Technical Overview

System Architecture

interface controls, such as the OK button, label title, and View tab bar, can be configured
with a cascading stylesheet style and the location of the image files used to render that
control. Users can select from among the available themes. In multilingual environments,
users can select their desired language for the user interface when they log in.

Webtop is built using the Documentum Web Development Kit (WDK). Just as developers
can incorporate Documentum Desktop components in a Windows application (as
delivered or in customized form), they can use WDK components in custom Web
applications. The WDK uses a development approach based on a form-control-event
approach, consistent with .NET WebForms and the developing Java Server Faces
standard (JSR 127). This approach enables developers to create production-quality user
interfaces far more quickly than traditional Web development techniques.

The WDK component model encapsulates customized and localized functionality into
a package of closely related files, managed separately from the base product to ensure
that the functionality is preserved during an upgrade. Any file — XML configuration
file, user interface string resource, JSP layout file, Java class file, cascading stylesheet —
can be copied into the custom area and modified. The files can be modified so that
they inherit most of their behavior from the Documentum-delivered versions of the
files, enabling them to override behavior where necessary without having to duplicate
existing behavior.

Many key Documentum applications are built using WDK. For example, many
Documentum products include a WDK-based administration module. Documentum
Administrator, the core administration application for Content Server, is a WDK
application. Documentum Web Publisher is a WDK-based application that enables
customers to create, manage, and publish Web pages and Web sites using Documentum
content management capabilities. Documentum Digital Asset Manager is a WDK-based
tool for marketing departments or any other organization that deals with rich media.

Documentum WDK client applications access Content Server functionality in the same
way as Documentum Desktop applications. The only difference with WDK applications
is that the machine requesting services is the application server, not the end-user’s
workstation. WDK components, working with the application server, communicate with
Content Server and pass the results to the user’s browser.

Content Services Integration with Enterprise Applications

Documentum offers several products that enable interaction with the Documentum
content management system from within other enterprise applications. Among the
products are:

• Documentum Content Services for SAP

• Documentum Content Services for Siebel eBusiness Application

• Documentum Content Services for Lotus Notes Mail

• Documentum Content Services for Portals

Also available are Content Services products for delivering content to various application
servers, such as BEA WebLogic and IBM WebSphere.

Documentum 5 Architecture:A Technical Overview 53

System Architecture

Content Services links content in Documentum repositories with objects in the enterprise
application, providing users with access to key Documentum functionality using the
familiar interface of the enterprise application, eliminating the time and costs associated
with searching for, filing, and storing documents. For example, an accounts payable
clerk using an SAP application can instantly see a vendor’s contract, invoice, purchase
requisition, and paid check from a single click on an SAP transaction report. Project
managers can review standard operating procedures, material safety data sheets,
engineering drawings, and specifications from within an SAP material master form.

Documentum enables rules-based processes for linking business content, triggering
workflows, and notifying end users when relevant content has changed. Automating the
linking process enables large volumes of scanned or remotely entered content, such as
accounts payable invoices, to be easily linked to existing or new ERP records, ensuring
error-free data entry and validation processes.

The Content Services products access the core content management functionality in the
same way all other client applications do: through DFC and BOF.

Figure 2–23. Content Services for SAP

54 Documentum 5 Architecture:A Technical Overview

Chapter 3

Developer Tools

The Documentum platform offers a number of ways for developers to access its content management
functionality. It provides open access at each layer of the architecture, from direct low-level function
calls to Content Server operations to pre-built presentation components that encapsulate complete
user tasks. Developers can use Documentum development tools to customize existing client
applications, incorporate Documentum-provided components into applications built with other
development tools, or make calls directly to the DFC layer. Using the range of available tools,
developers can quickly assemble content management applications from high-level components or
exert fine control over basic system operations on the server.

The suite of developer tools from Documentum, called Documentum Developer Studio, includes:

• Documentum Administrator is a Web-based product for configuring Documentum content
management systems, including implementation of system security.

• Documentum Application Builder is an integrated development environment for creating
infrastructure objects for content management applications, such as custom document object
types, workflows, and document lifecycles.

• Documentum Foundation Classes (DFC), including the Documentum Business Objects
Framework (BOF), is the object-oriented API for accessing core content management capabilities
and encapsulating business logic in business objects.

• Documentum JDBC Services enables applications to access Documentum repositories using
standard JDBC calls.

• Documentum Web Development Kit (WDK) provides a framework for developing Web-based
content management applications.

• Documentum Desktop Development Kit (DDK) provides a set of tools and reusable components
for building Windows-based content management applications.

• Documentum Portal Integration Kit (PIK) is a set of tools for integrating content management
capabilities into a portal framework.

• Documentum Media Services SDK provides tools to extend server side content analysis and
transformation capabilities.

This chapter discusses Documentum’s tools for developing content applications and how they fit
into the development life cycle.

Documentum 5 Architecture:A Technical Overview 55

Developer Tools

The Development Life Cycle

The major steps in designing and building content applications are the same as for any
enterprise software development project.

1. The first and most vital step is to analyze the business problem, identifying the
application requirements, and designing the application components necessary
to meet those requirements. Some development methodologies suggest applying
more than half of the overall effort to this step. When the analysis and design are
complete, specifications should be available that detail what Documentum objects
and processes need to be configured and what custom code needs to be developed.

2. The next step is to configure the Documentum repository and servers. Documentum
provides interactive tools that enable customers to structure the repository, create
custom object types for special forms of content, define users, set security access for
users and objects, and implement workflows and lifecycles for processing content.

In implementations that use customized versions of delivered Documentum
applications rather than developing new content applications, business analysts can
perform these configuration tasks without assistance from developers.

3. Once the basic configuration is in place, development can proceed on creating or
customizing content applications. The scope of the effort depends on how closely
packaged Documentum applications meet the business needs and whether pre-built
components are available for custom tasks. Documentum provides a variety of
development tools for different levels of customization and different development
environments.

4. Before putting any software project into production, it is important to test it. The
test environment should match the production environment as much as possible.
Documentum Application Builder enables developers to create packages containing
all of the configured objects and processes for a project and install them into a test
system repository. The packages, called DocApps, provide a straightforward way to
transfer customizations between development, test, and production systems.

The results of initial testing typically require the project to loop back to one or more
of the previous steps as issues and new requirements become apparent.

5. The final step is rolling out the software into production. DocApps and the
Documentum DocApp Installer can transfer all customizations to the production
system in a single package.

56 Documentum 5 Architecture:A Technical Overview

Developer Tools

Figure 3–1. Development Life Cycle for Content Applications

Configuring Content Applications

It is perfectly possible to implement an enterprise content management solution using
just applications provided by Documentum. The Documentum system provides all
of the functionality necessary for managing content: users can create, delete, check
in, check out, and version content in common file types such as Microsoft Word files,
Excel spreadsheets, text files, and multimedia files. However, even when no significant
development work is required, the server must be configured to fulfill the specific
business requirements. It is necessary to define:

• Users and groups

• Permissions for those users and groups

• Object types that represent the organization’s special categories of content

• Permissions for the custom objects

• A repository folder structure in which to organize content

• Automated tasks to manipulate and process content

• Document lifecycle stages through which content can move

• Task-based workflows through which to route content to people

The two Documentum products used to perform these application configuration tasks
are Documentum Administrator (for the security-related tasks) and Documentum
Application Builder (for creating custom object types and business process-related
tasks). Documentum Administrator is a tool for general repository maintenance, and
Documentum Application Builder is a tool for application development and deployment.

Documentum 5 Architecture:A Technical Overview 57

Developer Tools

Documentum Administrator

Documentum Administrator enables administrators and developers to monitor,
configure, and maintain Documentum repositories and servers throughout the
enterprise. With Documentum Administrator, a system administrator can:

• Configure Documentum repositories

• Configure the secure access to repository content by creating users, groups, and
access control lists

• Monitor system and resource usage

• Start and stop Content Servers

• Publish the contents of a repository

System administrators use Documentum Administrator once the Documentum system
is in production. However, the first two items are important configuration tasks that
developers or business analysts must perform as part of building the content application.

Documentum Application Builder

Documentum Application Builder is an integrated development environment for creating
and maintaining most custom server application objects. Developers use Application
Builder to develop custom object types, document lifecycles, workflow templates,
permission set templates, alias sets, XML applications, relation types, formats, methods,
procedures, and jobs. It also enables developers to specify constraints, validation, and
value assistance (display pre-defined attribute values in client applications) for custom
object types. It can package all of these customizations and components into a DocApp
for easy transfer to other repositories.

Application Builder enables you to create and package:

• Object types

• Document lifecycles

• Workflows

• Permission set templates

• Alias sets (used to assign symbolic names to users, permission sets, or repository
locations)

• Executable elements

• Data dictionary information

• Repository objects, such as queries or folder hierarchies

Application Builder consists of an integrated set of tools for creating each type of server
application object. For example, it provides access to the Documentum Workflow
Manager, a layout tool for designing and implementing automated business processes.
With Workflow Manager, users can create re-usable workflows without having to
manipulate the underlying objects with the application programming interface.
Application Builder provides access to similar tools for creating document lifecycles,
custom object types, and other server application objects.

58 Documentum 5 Architecture:A Technical Overview

Developer Tools

Figure 3–2. Documentum Application Builder

Developing Content Applications

For implementations that require customizations that go beyond configuring server
application objects, Documentum provides a range of development options.

From a developer’s point of view, Documentum functionality can be divided into three
layers: the presentation layer, the business logic layer, and the data model layer. The
proper development tools for the job depend on which layer needs to be customized.

The presentation layer is used to display content and structured information in the Web
browser or end-user application. The presentation layer consists of generic and custom
user interface components that allow information to be displayed in different ways
depending on such factors as the user role or the privileges. It roughly corresponds to
the software that runs on the user workstation or, in a Web environment, the application
server. The Documentum Desktop Development Kit (DDK) gives access to components
for the presentation layer of Microsoft Windows applications. In a Web environment,
Documentum Web Development Kit (WDK) would be the choice to present the layout
and also manage the flow and sequence of user interactions.

The business logic layer implements the customer-specific business rules and policies. The
business rules are built into common objects that can be reused in different application
areas. The business logic layer is independent of the interface used to display the results;
that is, it is independent of the presentation layer. If a procedure changes, the developer
can modify the corresponding business logic component, and all applications are

Documentum 5 Architecture:A Technical Overview 59

Developer Tools

automatically changed to the new policy. The Documentum Business Object Framework
(BOF) is designed for creating business objects that encapsulate business rules.

The data model layer defines how business data is stored in the repository. It defines the
content object hierarchy and the database schema. It is hidden from the presentation
layer by the business logic layer, which fully depends on how data and content is
organized and is therefore tightly coupled to the repository object model. As discussed
in the previous section, developers use Documentum Application Builder (DAB) to
create custom object types in the repository.

Implementing a complete content application typically involves a variety of coordinated
customizations, for example, a custom document type (data model layer), a business
object that controls the behavior of the type (business logic layer), and a user interface
control for manipulating the type (presentation layer). The advantage of using
Documentum-delivered components where possible is that all of the necessary objects
and types have already been built.

Figure 3–3. Applications Involve Coordinated Customizations at All Levels

Figure 3–4, page 61 below shows how to determine which development framework
to use depending on what functionality requires customization. Generally speaking,
developers should target the highest-level layer that provides them with the level of
control they need.

60 Documentum 5 Architecture:A Technical Overview

Developer Tools

Figure 3–4. Documentum Development Tools

Documentum Foundation Classes

As described in Chapter 2, Documentum Foundation Classes (DFC) is the primary
interface between content applications and Content Server. It provides an object-based
application programming interface that fully exposes the Documentum object model.

DFC enables programmers to access content management functionality through both
high-level operations and low-level object method calls. A services layer encapsulates
business logic for common processes, such as workflow, data validation, searching, and
virtual document management.

Figure 3–5. Documentum Foundation Classes

Documentum 5 Architecture:A Technical Overview 61

Developer Tools

At its lowest level, DFC wraps calls to Content Server API functions. The Content Server
API, referred to as DMCL (for Documentum Client Library), is a C library with interfaces
to all server functionality. Documentum strongly discourages direct calls to the DMCL
API. Since DMCL is written in C++, Java programmers would have to implement their
own Java support layer. Also, DMCL does not support the higher level capabilities
of DFC, such as virtual document management, Documentum business objects, and
data validation. Documentum provides access to DMCL solely for compatibility with
previous releases.

DFC consists of several packages, each containing the classes and interfaces for a
particular range of functionality.

Table 3–1. DFC Packages

Package Name Description

com.documentum.com Interface for accessing DFC through OLE/COM

com.documentum.fc.client Classes and interfaces for managing sessions and
manipulating data in the Documentum repository

com.documentum.fc.client.common Classes and interfaces to utility functionality
associated with all DFC objects

com.documentum.operations Interfaces to common high-level client
functionality, such as checking in and checking out
documents

com.documentum.registry Classes and interfaces that manage Documentum
information on the client’s local system

com.documentum.xml.xdql Classes and interfaces that enable querying the
Documentum repository with results returned as
XML

The sample code below shows the basic process of manipulating objects in the
Documentum repository using DFC. The code fragment from a Java program creates a
new document in the repository using a file from the local file system as its content.

IDfClient client = new DfClientX().getLocalClient();
IDfSessionManager sMgr = client.newSessionManager();

IDfLoginInfo loginInfo = new DfLoginInfo();
loginInfo.setUser("Mary");
loginInfo.setPassword("ganDalF");

sMgr.setIdentity(strDocbaseName, loginInfo);

IDfSession session = sMgr.getSession(strDocbaseName);
IDfDocument document = null;

document = (IDfDocument)
session.newObject("dm_document");

document.setObjectName("Report on Wizards");
document.setContentType("crtext");
document.setFile("C:\Temp\Wiz.txt");
document.link("/DFCObjCab/DFCObjFolder");

document.save();

finally {
sMgr.release(session);

}

62 Documentum 5 Architecture:A Technical Overview

Developer Tools

The major steps are:

1. Establish a session with the Documentum repository. To obtain a session, the
application must instantiate an IDfClient object, obtain a session manager object
from it, and provide login information for the repository. The session manager object
creates the session, represented by the IDfSession object.

2. Obtain or create the repository object to manipulate. Methods of IDfSession
object, such as newObject or getObjectByQualification, are used to get or create
repository objects. In the sample, a document object is created using the
method IDfSession.newObject. Note that the newObject method returns an
IDfPersistentObject object. The sample code explicitly casts it to an IDfDocument
object, then uses the document object’s save method, a method that IDfDocument
inherits from IDfPersistentObject.

3. Manipulate the repository object. Typically applications will use routines from the
operations package to manipulate the object — for example, check it out, modify
it, and check it back in to the repository. The sample code populates and saves the
IDfDocument object by calling some of its low level methods to assign a name,
type, and content file.

4. Release the session. When the session is released, control returns to the
IDfSessionManager object. The IDfSessionManager object can reassign it the next
time the application calls the newSession method.

Most DFC methods report errors by throwing a DfException object. Java code like
that in the above example normally appears within a try/catch/finally block, with an
error handler in the catch block. Visual Basic code uses the On Error Goto statement to
handle exceptions.

Business Objects Framework

Business objects are registered with DFC so that they are available from any code that
uses DFC. The business object framework is a standard on which Documentum and its
partners build business object components as extensions to the DFC. It provides a means
to distribute components based on a standardized and published framework and thus
eases distribution and integration of new services and objects.

The Documentum platform represents the structure of business logic using the object
hierarchy in the repository. For example, suppose a company needs to store various
different types of standard operating procedure (SOP) documents. The developer can
create a generic SOP object as a child of the standard dm_document object, then create
specialized instances of the SOP as children of this object. The children inherit the
properties of the parent SOP object and can also have properties of their own.

Documentum 5 Architecture:A Technical Overview 63

Developer Tools

Figure 3–6. Custom Object Types

This object-based model has always been one of the strengths of the Documentum
architecture and can be seen in every Documentum installation worldwide.

Suppose that a company policy states that every time a new version of any SOP is
checked in, a notification should be sent to the Director of SOPs. Without using business
objects, this business logic would have to be written into every client application. The
logic would be simple — if the object type is my_sop, send a notification after check
in — but it could easily be broken if a client did not implement it or different clients
implemented it in inconsistent ways.

Using business objects, the developer can attach the business logic to the objects in
the repository. By creating a type-based business object, meaning a business object
associated with a particular object type, and linking it to the my_sop object type, the
notification becomes part of the object’s standard behavior. The logic exists in the DFC
so that any time an object of this type is checked into the repository, a notification
is sent. When multiple client applications need to manipulate the same SOPs for
distinct business purposes, they can share the same objects, making them automatically
compatible with each other.

There are two types of business objects:

• Type-based business objects

• Service-based business objects

Type-Based Business Objects

Type-based business objects encapsulate behavior that is specifically bound to a
particular object type in the repository. They are used to provide new behavior for object
types, such as enforcing data validations or performing custom actions in response to
system events.

All persistent object types in the Documentum repository (such as dm_document or
dm_user) have a class or interface representing them in the DFC (IDfDocument or
IDfUser). The interface allows developers to manipulate the objects; for example, a
dm_document object is saved using IDfDocument.save().

Type-based business objects enable developers to define their own interfaces for custom
object types by defining a class in the DFC for them. This class extends DfPersistentObject
or a subclass, enabling developers to override the behavior of existing DFC methods, or
add custom methods. Thus, it is possible to have a type-based business object class that

64 Documentum 5 Architecture:A Technical Overview

Developer Tools

represents an SOP so that IMySOP.save() invokes an SOP-specific implementation of the
save() method, or IMySOP.myAction() invokes a completely new method.

A type-based business object consists of:

• A Java interface that contains the methods that can be performed on the object type’s
data

• A Java class that reflects an object type and contains implementation of the methods
that can be performed on the object type’s data

Figure 3–7. Type-Based Business Object

Service-Based Business Objects

Service-based business objects implement business logic that does not need to be
associated with a specific object type. They are used to implement logic not directly
related to objects, or logic shared between object types.

For example, a common requirement is to render HTML by applying an XML stylesheet
to an XML file. One way of implementing this requirement is to create type-based
business objects for each of the object types that may need to be rendered. This approach
creates a great deal of redundancy. A better approach is to move the rendering logic
into a service-based business object, then have each type-based business object call the
service-based object to perform the rendering.

A service-based business object consists of:

• A Java interface that extends (subclasses) the com.documentum.fc.client.IDfService
interface and defines the methods (services) that the service provides

• A Java class that implements this interface

A service-based business object does not have a corresponding object type.

Documentum 5 Architecture:A Technical Overview 65

Developer Tools

Figure 3–8. Service-Based Business Object

Data Access APIs

The data access APIs enable applications to access content in the Documentum
repository using industry-standard interfaces. For example, Documentum JDBC Services
enables applications to connect to Documentum repositories using the Java Database
Connectivity (JDBC) interface. JDBC is an interface for accessing repositories from
Java client applications, Java Server Pages (JSPs), or servlets. With Documentum
JDBC Services, applications can connect to a Documentum repository, issue server API
commands, perform DQL or SQL queries, access metadata, and retrieve content from
the repository. When an application connects to a Documentum repository using JDBC
Services, it implements the JDBC 2.0 API using Documentum’s DQL instead of ANSI
SQL.

66 Documentum 5 Architecture:A Technical Overview

Developer Tools

Figure 3–9. Documentum JDBC Services

Documentum JDBC Services translates JDBC API calls into DFC calls so that an
application can communicate with Content Server in the same way it communicates with
databases or other repositories. Client applications can use existing database access code
and work correctly with Documentum repositories.

JDBC Services supports most standard JDBC APIs. It implements the JDBC 2.0
extension API javax.sql. The extension API enables the use of data sources, which are
general-purpose objects for specifying databases and other resources to applications.
JDBC Services also supports the Java Naming and Directory Interface (JNDI), so that
applications can connect to the repository using logical names rather than hard-coded
names.

JDBC Services supports connection pooling. Connection pooling allows applications to
use connections that exist in a pool rather than opening and closing new connections.
This approach improves application performance because new connections do not have
to be constantly created and destroyed.

Documentum Web Development Kit

The Documentum Web Development Kit (WDK) provides a framework on which
to build Web applications that connect to the Content Server. Most Web-based
content applications access Documentum content management capabilities through
Documentum WDK. Applications built using WDK reside on an application server.
Users access them through a browser, just like any Web application.

The WDK framework runs as a Web application on J2EE-compliant application servers.
The WDK programming model is based on XML and J2EE technologies:

Documentum 5 Architecture:A Technical Overview 67

Developer Tools

• A presentation layer uses HTML and JSP (JavaServer Page) tag libraries to control
the Web page user interface and application configuration

• A component model that encapsulates a comprehensive set of Content Server
functionality in configurable server-side components

WDK also provides robust server-side state and browser history management for content
applications. Components are configured through XML configuration files.

A JSP page in WDK consists of fixed (template) HTML and dynamic content rendered
by JSP technology. Most of the application behavior is represented by JSP tags from
Documentum tag libraries. The application logic is separate from the JSP page, in tag
library classes. User interface events are translated into method calls to server-side
objects. This approach separates page layout from application behavior and allows
applications to reuse user interface elements (controls and forms) without affecting
behavior.

JSP pages are compiled into servlets (Java classes) by the JSP container or by a third-party
compiler. WDK provides JSP pages that are compiled into servlets. These servlets
execute on the Java application server and either perform a server task or generate
dynamic content that is then displayed on the client browser. WDK servlets conform
to the Servlet 2.2 specification for Web applications, as do the JSP pages, client-side
applets, and tag libraries.

The WDK-based application gets data from the Content Server via DFC, encapsulates
the data in Java classes on the application server, and renders the data to the browser.
Developers can use a DFC session interface, an in-memory recordset, or a JDBC
connector as a data source.

Figure 3–10. Documentum Web Development Kit (WDK) Architecture

68 Documentum 5 Architecture:A Technical Overview

Developer Tools

WDK architecture consists of these layers:

• The Java application server and J2EE provide the application context. WDK runs
within a J2EE application server.

• The service framework provides content management capabilities, which are
implemented by Documentum Foundation Classes (DFC) and by the Sun Java SDK.

• In addition to the control tags and behavior classes which influence the user interface,
the presentation model incorporates capabilities related to browser management
and application configuration.

• The component model provides a configurable, encapsulated set of Documentum
functions or components. Component JSP pages use WDK controls from the tag
libraries, and each component can handle a control event with its own event handlers.

The WDK framework enforces a contract for each component, consisting of
parameters that initialize the component. The component behavior class includes
events that respond to user action and properties that get and set the state of a
component. The component contract is defined in an XML configuration file.

• The application layer consists of a set of components that are composed of JSP
pages, supporting behavior classes, and XML configuration files. The JSP pages
are modeled by form classes that manage state and navigation. The user interface
in forms is modeled by controls, which are widgets represented by JSP tags.
The application is supported by the WDK framework of services, such as the
configuration, action, messaging, and tracing services.

A Web application can contain several WDK application layers. The application
model enforces consistent appearance and behavior across all application layers
contained within the root application. The J2EE-compliant root context can contain
application layers that inherit application parameters from other application layers.
The custom application layer can then extend the existing application layers.

Using the branding engine, an application layer can apply themes that provide the
application’s unique appearance through icons, images, and stylesheets.

The WDK framework provides for rapid development of Web applications that access
Documentum repositories. Included with WDK are many pre-built components that are
easily configurable and easily integrated into an application. Custom Web applications
can be based on WDK or can extend other WDK client applications.

Documentum Desktop Development Kit

The client product Documentum Desktop is built from COM components that
encapsulate content management functionality. For example, the Login Manager
component displays a dialog box that prompts the user for a repository to log in to,
their user name, and their password, connects the user to the repository, and manages
their session. Developers can incorporate the Login Management component in their
applications. In this way, they do not have to write the corresponding code from scratch.

Developers can use any COM-enabled development environment, such as Visual
Basic or Visual C++, to build Windows-based clients that use Desktop components.
Desktop component properties and methods are exposed to the integrated development

Documentum 5 Architecture:A Technical Overview 69

Developer Tools

environment through standard COM interfaces. The Documentum Desktop
Development Kit (DDK) includes the Visual Basic source code for many Desktop
components so that they can be customized. In addition, developers can use DFC
interfaces, classes, properties, and methods in their client applications. DFC is exposed to
COM-based clients as a type library. (A type library is a file created using the Microsoft
Interface Definition Library that contains type information about exposed objects — in
this case, Documentum objects.)

The DDK consists of:

• Visual components — Components that display a user interface making an action,
such as importing or checking in files, available to users

• Framework components — Components that implement the functionality underlying
the visual components

• Component Dispatcher — Decides which component needs to be invoked depending
on a variety of conditions; for example the Component Dispatcher could invoke a
different Properties component depending on the user, lifecycle stage, or object type

Documentum supplies the Visual Basic source code for most visual components so
that they can be customized. Developers can also replace them completely with new
components. As long as they meet the standard interface requirement, newly developed
components can use the Documentum Desktop framework and can be launched using
the Component Dispatcher. The interface requirement is simply that the component must
implement the COM interface IDcComponent with three methods: Init, Run, and DeInit.

Desktop components are standard COM components and all implement the Init, Run
and DeInit methods. Although it is possible to invoke these methods directly, doing so
bypasses the power of the Component Dispatcher. The best way to invoke Desktop
components is using the RunComponentEx method of the Component Dispatcher
library. The RunComponentEx method takes the name of the function to perform,
such as DcProperties, and decides which actual COM component to launch. The
context-based mapping of the function name to the component means that the same
function may cause a different component to be displayed depending on the selected
object’s type, lifecycle state, user capability, or group membership. The rules governing
which component to launch are managed using Documentum Application Builder.

The RunComponentEx method calls the IDcComponent::Init, IDcComponent::Run, and
IDcComponent::DeInit methods of the component. Some components may perform
an operation that results in the creation of new objects; for example, New, Copy and
Check In. If the application requires the object IDs of the newly created objects in order
to process them further, RunComponentEx can pass the object IDs of the new objects
back to the calling code.

This sample code shows how to call RunComponentEx from Visual Basic.

’ Declare the Variables
Dim ComponentDispatcher As DcComponentDispatcher
Dim objectitem As DCITEMSERVERLib.DcObjectItem
Dim reportMgr As DCREPORTSLib.DcReport

’ Create an instance of the component dispatcher
Set ComponentDispatcher = New DCCMPDSPLib.DcComponentDispatcher
’ Create an empty DcItems collection to hold the objects to
’ display the properties of.
Dim NewItems As New DCITEMSERVERLib.DcItems
’ Get a new ObjectItem and set its r_object_id

70 Documentum 5 Architecture:A Technical Overview

Developer Tools

Set objectitem = New DCITEMSERVERLib.DcObjectItem
objectitem.ID = objID

’ Add the ObjectItem to the DcItems collection after setting
’ the item type Note: DC_OBJECT_ITEM_IID_STRING comes from a
’ resource file supplied with the source
NewItems.Type = DC_OBJECT_ITEM_IID_STRING
NewItems.Add objectitem

’ Set up the values to pass into RunComponentEx.
invokerName = ""
docbaseName = dfSession.getDocbaseName
userName = dfSession.getLoginInfo.getUser
domainName = dfSession.getLoginInfo.getDomain

’ Call RunComponentEx
Dim rv As Long
rv = ComponentDispatcher.RunComponentEx("DcProperties", _

"DcDesktopClient", _
docbaseName, _
userName, _
domainName, _
NewItems, _
frmMain.hWnd, _
reportMgr, _
"", _
DC_NOTGLOBALCOMP)

Documentum Portal Integration Kit

Documentum Portal Integration Kit (PIK) extends the WDK framework by providing a
set of Documentum components that expose common content management capabilities
packaged as portlets (Java classes, JSP pages and XML definition files) that can be
integrated into a portal. The PIK provides a “write once, run anywhere” approach where
a Documentum component can be housed in many different portals and applications
without code modification.

Documentum 5 Architecture:A Technical Overview 71

Developer Tools

Figure 3–11. PIK Architecture

The PIK combines off-the-shelf, embeddable portal components with documentation
and integration examples that enable portal vendors and customers to rapidly create
adapters that bind the portlets to new portal environments. It consists of:

• Portlets for common activities, such as searching a repository, checking documents in
and out, and viewing object properties

• Portal adapters for BEA WebLogic Portal, Epicentric, and Plumtree

• A portal adapter specification

• An API for building adapters for additional portal frameworks

• Adapter run-time support

The delivered portlets can be deployed as they are, or they can be configured to change
their look and feel. For example, the presentation of an Inbox Component may be
customized to add a Portal specific banner, or its behavior may be customized to add
support for Portal specific caching. The PIK portal adapter kit also enables developers to
adapt any WDK component as a portlet.

Documentum Media Services SDK

Documentum Media Services provides out-of-the-box capabilities for many common file
formats. The Documentum Media Services SDK is a set of tools that allows developers
to add media processing technology to Media Services by creating additional Media
Plug-ins to handle proprietary or specialized file formats. The SDK consists of a Java API
for connecting the Media Plug-ins into the Media Server, documentation for the APIs
and for providing overall guidance, and sample source code.

72 Documentum 5 Architecture:A Technical Overview

Developer Tools

Figure 3–12. Media Services Plug-Ins

Any program that transforms or analyzes content may be incorporated as a Media
Plug-in. The programmer only needs to implement a simple interface and then configure
Media Server to use the plug-in. The server looks after most of the housekeeping, such
as running as a service, managing the request queue, fetching and storing content,
managing the thread pool, and monitoring Media Plug-ins to ensure they behave well.

New plug-ins can be chained with out-of-the-box plug-ins to create sophisticated
transformations. This also lets the developer leverage existing capabilities when
developing a plug-in for a new file format. For example, the new plug-in might convert a
proprietary file format into PDF. The developer could then leverage existing plug-ins to
generate JPEG renditions for each page of the PDF.

To develop or extend a Media Plug-in, a developer does three things:

1. Write a plug-in that implements the Media Services Java interface

2. Write command files (which the server passes to the plug-in) for supported
transformations and store them in the Documentum repository

3. Write or extend standard Transformation Profiles that define the file formats and
parameters that apply for each transformation, and map these to the command
files for the new plug-in

By following the Media Services design pattern and by performing these three steps,
the new media plug-in capabilities will be available without user interface changes
through any clients that use Media Services.

Documentum 5 Architecture:A Technical Overview 73

Developer Tools

Deploying Content Applications

For mission-critical applications, most application development and testing should occur
in a separate repository from the live, in-production repository. Developers and testers
thoroughly test their new or updated applications on a test system, then deploy them to
the production repositories. To support this model, Documentum Application Builder
enables developers to package application elements into a single entity called a DocApp.

A DocApp is a virtual document that collects together all the elements of a custom
application. It consists of some or all of these parts:

• Object types

• Document lifecycles

• Workflows

• Permission set templates

• Alias sets (used to assign symbolic names to users, permission sets, or repository
locations)

• Executable elements

• Data dictionary information

• Repository objects, such as queries or folder hierarchies

For example, Documentum Desktop requires a DocApp, called DcDesktopClient. To
use Desktop to access a Documentum repository, a customer installs DcDesktopClient
in that repository.

A DocApp archive is a portable representation of a DocApp, stored as a file on the file
system. DocApp archives are created with Application Builder, then installed using
Documentum DocApp Installer. The DocApp archive includes installation options for the
objects contained in it, telling DocApp Installer whether to run a pre- or post-installation
procedure, how to upgrade existing objects, which cabinet and folder objects are
installed, and the location, permissions, and owners of objects in the target repository.

DocApp installer performs the following tasks:

• Detect and, if possible, resolve naming conflicts between the DocApp objects and the
target repository

• Detect and, if possible, resolve object type conflicts between the DocApp and the
target repository

• Unpack and install the contents of the DocApp archive

DocApp Installer performs these tasks automatically and writes a log of its actions
in HTML format to a file that you specify. If conflicts arise, it either resolves them
automatically or terminates the installation.

74 Documentum 5 Architecture:A Technical Overview

Developer Tools

Figure 3–13. Deploying Content Applications as DocApps

Documentum 5 Architecture:A Technical Overview 75

Developer Tools

76 Documentum 5 Architecture:A Technical Overview

Chapter 4

Enterprise Platform Fundamentals

As a critical part of the IT infrastructure, Documentum demonstrates the key characteristics required
in any production-ready enterprise platform. It is:

• Open

• Extensible

• Scalable

• Reliable

• Secure

• Portable

• Global

• Complete

Many of the features that embody these interrelated characteristics have been described earlier. This
chapter provides an overview of how the Documentum platform fulfills these crucial requirements.

Open

Documentum 5 is thoroughly standards based, enabling it to integrate easily within
existing IT infrastructures. The Documentum API provides standard APIs for WebDAV,
FTP, ODBC, JDBC, and the Web services standards UDDI and WSDL. The Documentum
platform is fully J2EE compliant (for Web-based applications) and supports the full
range of Microsoft standards, such as .NET, COM, ASP, and Visual Basic. It provides
out-of-the-box integration with enterprise applications and e-business platforms,
including directory services using the LDAP standard. It has complete and configurable
support for XML processing.

Extensible

The Documentum 5 platform provides an end-to-end solution for all content
management needs — from creation/capture and management through delivery and
archiving. However, the specific needs of each organization are unique, requiring
extensions to the platform that embody the organization’s business rules.

Documentum 5 Architecture:A Technical Overview 77

Enterprise Platform Fundamentals

The object model that serves as the foundation of Documentum 5 is fully extensible,
enabling customers to define custom object types that meet specific business
requirements. The Business Objects Framework (BOF) provides a model for extending
the range of available content management services. The platform supports the
development of plug-ins in several key areas, such as user authentication, rich media
handling, and legacy storage support. The open Documentum API ensures that
customers can add content management capabilities into any application.

Scalable

Documentum 5 is designed for the global distributed enterprise. As a company’s content
management needs grow in size and complexity, the Documentum platform grows with
it to efficiently manage ever-increasing volumes of content, high traffic loads, more
users, and complex workflow processes, while maintaining high system performance.
Documentum can support geographically distributed sites, handling the network
latency and language issues that global enterprises face. It can handle these increasing
loads in a cost-effective manner. The Documentum architecture has been designed to
take full advantage of the scalability of the underlying hardware platform by utilizing
multiprocessor systems as well as clustered environments.

Multitiered Deployment

An enterprise software implementation can be logically partitioned into layers of
functionality, usually referred to as tiers. Each tier has responsibility for a distinct portion
of the overall deployment, and within each tier, there can be one or more parts. In a
typical content management implementation, the three main tiers are the client tier, the
server tier and the data tier. (In an Internet-based environment, the application server is
sometimes considered an additional tier that comes between the client and server tiers;
alternatively the application server can be considered part of the client or server tier.)

78 Documentum 5 Architecture:A Technical Overview

Enterprise Platform Fundamentals

Figure 4–1. Three-Tier Deployment

The client tier contains the software components dealing with user interfaces and user
interaction. Client software displays content in a Web browser or standalone application
and enables a user to view, edit, or otherwise manipulate the content.

The server tier makes content management services and capabilities available to clients.
Servers communicate with clients using well-defined DFC application programming
interfaces. The configuration of the servers on the server tier implements the customer’s
specific business rules and policies.

The data tier is where servers permanently store content, metadata about the content, the
state of server objects and processing, and other information. Central to the data layer is
one or more database servers that house the stored information.

The number of machines on each tier is extremely variable, depending on the volume
of the content being managed and the complexity of the content applications. A key
advantage of this distributed architecture is that new or more powerful machines can
easily be added at whatever point is causing a bottleneck.

Horizontal and Vertical Scalability

The Documentum architecture supports both horizontal scalability and vertical scalability.

A software application scales horizontally (or “scales out”) when it can be deployed not
only on multiple servers across tiers, but also on multiple servers within a single tier.
For example, multiple Content Servers can manage the same Documentum repository.
Horizontal scaling implies that the load is balanced among the machines so that resource
consumption between the servers is uniformly shared. This capacity growth strategy is
popular because it allows a company to take advantage of the most competitively priced
hardware, grow capacity incrementally, and provide cost-effective failover for high

Documentum 5 Architecture:A Technical Overview 79

Enterprise Platform Fundamentals

availability. Each tier of the Documentum platform scales out across multiple servers,
allowing customers to effectively build and grow highly-available, low-cost systems with
excellent performance. Transparent load balancing at each tier helps to provide not only
uniform resource consumption, but also continuous operation for high availability.

A software application scales vertically (or “scales up”) within a host when one or
more tiers can be run within a single host and capacity can be increased by adding
CPUs, memory, and disks. This type of scaling is popular in environments where
maintenance costs need to be maintained. It can provide performance advantages as
well. The Documentum platform takes full advantage of high-performance servers,
facilitating data center consolidation and significantly reducing the cost of managing
large-production content management environments. Documentum has a minimally
synchronized, multi-threaded architecture, so that throughput is not limited by a
single-threaded function or resource contention. The partitioning and load balancing
used in the multi-server environment is also effective when scaling within a large
symmetric multiprocessing (SMP) host.

The Documentum platform scales in all areas, including:

• Content objects. Content Server can handle repositories ranging from small
departmental applications to enterprise implementations with thousands of
users and billions of objects. A single Documentum repository is capable of
handling 256 peta-objects (256 x 1015 objects), well above the threshold of even the
largest enterprise content archive. Repositories can be combined into a federated
environment for essentially unlimited capacity. Each object has a globally unique
identifier, avoiding the bottlenecks that would occur with relational identifiers.
Content Server has been verified to provide excellent response time with over 100
million objects. The Documentum platform also supports repository federations,
which are groups of cooperating repositories that share common definitions to
ensure the integrity of cross-repository operations.

• Concurrent users. To increase the number of concurrent contributors, each tier
on the “authoring” side of the content management system must scale. The
application server and HTTP server tier can be horizontally partitioned across
multiple servers through the use of network load balancers. The Content Servers for
a single repository can be partitioned across multiple servers in a similar fashion
(an “active-active” server cluster). Content Server clients (Web-tier or Desktop)
transparently load-balance their connections from a list of available Content Servers
provided by the Documentum DocBroker.

• Concurrent workflows. As the number of content authors simultaneously
promoting content through the various workflow stages increases, the ability of the
workflow engine to scale increases in importance. A workflow typically consists of
manual and automatic tasks. Individual contributors complete the manual tasks,
and workflow agents execute the automatic tasks. Documentum supports multiple,
parallel workflow agents to service the same automatic task queue, ensuring that
automatic tasks are completed with minimal delay.

• Content distribution. Site Delivery Services and Content Distribution Services allow
enterprises to rapidly and efficiently distribute content to multiple remote sites
automatically, using centrally maintained source content.

• Geographically dispersed users. Scaling across an enterprise rarely involves a
networking environment that is equal for all users. Distance can significantly

80 Documentum 5 Architecture:A Technical Overview

Enterprise Platform Fundamentals

increase network latency for some users; other users may have limited access
to bandwidth; yet other users might be disconnected for long periods of time.
Documentum supports a rich array of distribution and replication features for
content and metadata that are optimized for these real-world environments. On the
server tier, the platform supports multiple character sets and locales, as well as
distributed and federated repositories. With distributed content, the system provides
proximity-based load balancing, ensuring that content is stored and retrieved from
local repositories. On the client tier, Documentum provides persistent caching of
metadata to minimize network traffic. It also supports an “offline” mode for client
applications.

High Performance

As the number of users and volume of managed content expands, and the size and speed
of the servers increases, the efficiency with which information is exchanged across the
network becomes ever more critical. Improving the performance of servers cannot have
the intended effect if the network becomes a bottleneck. Efficient use of the network can
be especially important to global organizations, where network nodes may be spread
across countries and have latencies of over 250 ms per message.

The biggest consumers of network resources in a multitiered system are:

• Establishing and maintaining connections between machines

• Transferring data (software objects and content)

Minimizing Connections

When a client application needs to interact with a server, it must first establish a session
with the server through DFC. The session represents a connection through which the
client can send instructions and requests to the server. The client maintains the session
for as long as it needs the server connection, then disconnects. When creating a session,
these steps occur:

• A network connection is established between the client (Web-based or Desktop)
and the Content Server

• A thread or process is initialized on the Content Server to support the session

• A network connection is established between Content Server and the RDBMS

• The client user is authenticated by the Content Server

If a DFC-based client application needs to connect to a Documentum repository to run a
simple query then disconnect, the process of connecting and disconnecting can take up
to 90% of the total transaction time, with the query itself taking only 10%. With many
clients repeatedly connecting and disconnecting from the server, it is easy to see how
resources would be inefficiently consumed.

Because of the overhead associated with establishing a session, the most efficient strategy
is to enable clients to reuse sessions that already exist. Rather than destroying the session
object when a client is done using it, the client retains the session but marks it as idle;

Documentum 5 Architecture:A Technical Overview 81

Enterprise Platform Fundamentals

when it needs another session, it reactivates the idle session rather than creating a new
one. This approach is called connection pooling or session pooling.

A connection pool is a pre-established collection of sessions that can be shared
between different client applications. Without connection pooling, when a session is
disconnected, the session object is destroyed, the server process terminated, and the
network connections dropped; in short, the work involved in establishing the connection
is lost. With session pooling, the established session is retained and reused for a different
application. Connection pooling is particularly powerful when the “client” is the
application server running Documentum WDK-based content applications.

Figure 4–2. Connection Pooling

Connection pooling results in less overhead for establishing connections. It also results
in significantly lowered resource requirements as sessions are shared amongst a number
of users. Each request is handled by any available shared session from the pool.

Minimizing Data Transfer

Another potential drain on performance and network bandwidth is sending large
volumes of data between clients and servers. The Documentum platform offers a number
of strategies for reducing the amount of transferred data.

Some of these strategies relate to application design. One key principle is to request only
the data necessary to complete a task. For example, to display a list of documents for
a user to choose from, it is far more efficient to request just the documents’ attributes
from the server, not the documents themselves. Once the user selects a document, the
application can retrieve the full document object for that single document.

Documentum Webtop provides an illustration of the principle. Because they are so
intuitive, navigation trees are a common user interface element for locating documents
in a folder hierarchy. In typical Web-based applications, the pages are rebuilt each time
a user drills down into a cabinet or folder. Throughout the day, a user might navigate
into 5 or 10 areas within the repository structure, causing those folder trees to remain
expanded in the display. However, as each folder or cabinet is expanded, the size of the

82 Documentum 5 Architecture:A Technical Overview

Enterprise Platform Fundamentals

tree pane gets larger and larger, and response time gets slower and slower. The user
must collapse folder paths in order to decrease that page size and get better response
time. For users connected via high-speed networks, the cost of displaying the tree
pane is not as significant as it is for users accessing the application via dialup or high
latency connections.

For applications with navigation trees, the time to display the contents of a folder, Inbox,
or search results is directly proportional to the number of items displayed in the tree. For
example, when opening a folder with 500 documents, each document is processed in
turn to build the appropriate links. This can produce a very large HTML page which
would take a long time to transfer back to the browser.

Webtop offers two ways to handle this issue. First, it enables each user to set a maximum
number of items to display at once. These settings can be changed dynamically based
on the current requirements of the user. This functionality protects the user from the
penalties of opening a very large folder, or issuing a very unselective search returning a
large number of objects.

Second, Webtop offers streamline view, a user interface that does not use a navigation tree
control. The streamline interface has been designed with the needs of remote users in
mind. The lightweight interface has fewer graphics, requires fewer HTTP messages per
page, and consumes less than half the bandwidth of “classic view” (with the navigation
tree), making it ideal for users connecting to the repository from a dialup connection or
with slower network connectivity. Webtop provides the ability to switch between classic
view and streamline view on demand, to best suit the user’s connectivity and the task
at hand.

Figure 4–3. Webtop Streamline View

Another way that Documentum applications minimize the exchange of data is through
caching. The first time an application retrieves an object, it places a copy of that object
in its local cache. The next time it needs to access the object, it can retrieve the local

Documentum 5 Architecture:A Technical Overview 83

Enterprise Platform Fundamentals

copy. Instead of retrieving the object over the network again, the application exchanges
a much smaller message with the server, verifying that its local copy is still the most
recent version of the object. Documentum offers developers a choice of object coherency
algorithms, enabling them to verify the local copy in the manner best suited to the
environment. This persistent caching is particularly beneficial for infrequently changing
objects.

Documentum’s distributed content features also help minimize data transfer. With
distributed content repositories, the system stores and retrieves content in local
repositories, reducing the effect of slower network environments.

For activities that do not require immediate interaction with Content Server,
Documentum client applications offer the option to “work offline.” This feature enables
users to download content from the Documentum repository to their local machine and
work on them while disconnected from the repository. When they reconnect to the
repository, the system synchronizes the offline content with the matching objects in the
repository. The synchronization process updates the repository with any changes the
user has stored on the local machine. Content can be correctly synchronized even if it has
been moved or renamed in the repository. The user resolves any conflicts between the
local copies and the repository during the synchronization.

Reliable

The Documentum 5 architecture follows a transactional model that ensures the integrity
of the data in the repository at all times.

The multitiered architecture of the Documentum platform offers several options for
ensuring that content management servers are available 24 hours a day. Multiple
Content Servers can serve a single repository; if one of the servers goes down, the system
automatically routes requests to another server for that repository. Repositories can be
replicated, so that one serves as a backup for the other.

84 Documentum 5 Architecture:A Technical Overview

Enterprise Platform Fundamentals

Figure 4–4. Content Server Clustering

Secure

Documentum 5 enables organizations to make their content available to a wider range
of collaborators, but it does so without compromising the security of proprietary
information. Content in the repository is completely secure: each piece of content has an
associated security access control list that defines which users, groups, or roles can access
it and which operations they can perform. For additional security, file stores containing
content files can be encrypted. Administration files can also be encrypted, ensuring that
sensitive information is not compromised.

Communication between the various components of the architecture is likewise secure.
The channels between Content Server and other machines, including non-Documentum
machines such as a directory server, can be handled through Secure Sockets Layer (SSL).

Web-based Documentum applications support single sign-on, where users are
authenticated using a user name and password they have already entered for another
applications. The authentication threshold is configurable through an extensible
authentication plug-in framework, enabling Documentum applications to enforce two-
or three-factor authentication using smart cards, certificates, or biometrics when this
level of security is required.

Documentum 5 Architecture:A Technical Overview 85

Enterprise Platform Fundamentals

As a further security measure, Documentum can keep an audit trail of all system
activities, from user login times and content updates to changes in administrative
settings. It supports the validation of digital signatures. The Documentum platform
includes all of the features an organization needs to implement a system that is fully
compliant with regulatory requirements, such as the 21 CFR Part 11 standard for
pharmaceutical companies making submissions to the FDA.

Portable

Documentum 5 is supported on a variety of databases, operating systems and portal
and application servers. Components of the system can be moved transparently from
one supported configuration to another.

Table 4–1. Supported Configurations

Operating Systems

• Sun Solaris

• Microsoft Windows

• IBM AIX

• HP-UX

Database Management Systems

• Oracle

• Microsoft SQL Server

• IBM DB/2

• Sybase

Directory Servers

• Sun ONE Directory Server

• Oracle Internet Directory

• Active Directory

Application Servers

• J2EE

• COM/.NET

Global

Businesses often have sites and customers around the world. Documentum 5 handles
users and content from around the globe. It accommodates local languages, culture,
and currency, including the storage of multilingual content in shared repositories. The
Documentum platform can provide a single virtual repository spanning geographical
boundaries. The virtual repository can take the form of a single distributed repository or
repository federations, which are groups of cooperating repositories that share common
definitions. The virtual repository gives users access to content regardless of the original
language or geographical location.

Documentum 5 is Unicode compliant using the universal transformation format-8
(UTF8), which means that it can support single-byte languages such as English, French,
or Italian, and double-byte characters like Korean or Japanese (Kanji). It supports clients
in a variety of codepages and handles the transcoding between Unicode and other
codepages.

Documentum provides localized user interfaces in seven languages: English, French,
Italian, German, Spanish, Japanese, and Korean. Language support for these “Tier

86 Documentum 5 Architecture:A Technical Overview

Enterprise Platform Fundamentals

1” languages is delivered in the form of easily installed Language Packs, which are
separately compiled and versioned add-on packages that provide a complete localized
interface for a specific language. Documentum’s Unicode support and Language
Pack architecture give customers access to localized products built on the most recent
base releases, and permit easy implementation of “Tier 2” localizations, simplifying
localization and accelerating global deployment.

One of the key requirements of a globalized content management system is a repository
that can store and manage multilingual content. Documentum’s features and design do
not make assumptions based on a single language or locale. Instead, Content Server can
store metadata and content files from all languages and locales in a common repository.
A unique feature is multi-language rendition management, which provides the ability to
link versions of the same content in different languages. Users can access the content
using a localized interface in any of the Tier 1 languages; users of Web-based applications
can choose their preferred language when they log in. The full range of services is
available for the multilingual content, including full-text searching in any of the Tier
1 languages as well as seven additional languages: Danish, Dutch, Finnish, Bokmal,
Nynorsk, Portuguese, and Swedish.

Documentum provides built-in workflows to help automate the process of globalizing
content. For example, Documentum Web Publisher includes workflows for exchanging
content with translators. Through the use of Inter-Enterprise Workflow Services, external
translators can participate as easily as in-house translators can.

Web Publisher enables contributors to deliver content in multiple languages and
coordinates the publication of Web content in different language renditions. It supports
fallback rules, which specify what happens when content is not available in the primary
language for a Web site. For example, the rules for a French Canadian Web site might
instruct the system to “fall back” to French (from France) if a specific localized file is not
available, then to the United States English version if neither French version is available.
Web Publisher includes built-in reports to track the status of the globalization progress.

Figure 4–5. Web Content Language Fallback Rules

Documentum 5 Architecture:A Technical Overview 87

Enterprise Platform Fundamentals

Comprehensive

As the descriptions in this document demonstrate, Documentum 5 provides an
end-to-end solution for all content management needs — from creation/capture and
management through delivery and archiving. Documentum can manage content in
any form. The platform is appropriate for traditional content applications as well as
for business applications with more targeted content management needs. The open
architecture enables customizations and plug-ins to extend the range of capabilities.

Documentum is recognized as the leader in enterprise content management by
customers, analysts, partners, and developers. The Documentum enterprise content
management platform has been field tested in thousands of the world’s largest
organizations and has already established itself as the platform on which customers and
partners standardize their content infrastructure.

Documentum enables an entire ecosystem of partners, such as independent software
vendors, systems integrators, hardware vendors, value added resellers, and original
equipment manufacturers, which add value to the Documentum platform. For example,
there are many commercial applications available from independent software vendors
that leverage Documentum. They include accounts payable solutions that work in
conjunction with ERP applications, contract management applications that augment
supply chain management or CRM applications, publishing applications for use in
regulated industries such as pharmaceuticals, and enterprise portal applications that
deliver personalized information to a specific audience.

Every product innovation, every service enhancement, and every process improvement
rests on an effective use of information. If you’re not managing your content, you’re
not managing your business. Documentum can make your organization more agile,
responsive, and productive. An investment in Documentum is an investment in the
future of your business.

88 Documentum 5 Architecture:A Technical Overview

Enterprise Platform Fundamentals

Figure 4–6. Documentum Universe

About Documentum

Documentum provides enterprise content management (ECM) solutions that enable
organizations to unite teams, content, and associated business processes. Documentum’s
integrated set of content, compliance, and collaboration solutions support the way people
work, from initial discussion and planning through design, production, marketing, sales,
service, and corporate administration. With a single platform, Documentum enables
people to collaboratively create, manage, deliver, and archive the content that drives
business operations, from documents and discussions to e-mail, Web pages, records, and
rich media. The Documentum platform makes it possible for companies to distribute all
of this content in multiple languages, across internal and external systems, applications,
and user communities. As a result, Documentum customers, which include thousands of
the world’s most successful organizations, harness corporate knowledge, accelerate time
to market, increase customer satisfaction, enhance supply chain efficiencies, and reduce
operating costs, improving their overall competitive advantage. For more information
about Documentum, visit www.documentum.com or call 800.607.9546 (outside the
U.S.: +1.925.600.6754).

Documentum 5 Architecture:A Technical Overview 89

	
	Documentum 5 Architecture: A Technical Overview
	Enterprise Content Management
	Content Applications
	Figure 1 1. Content Applications Span Industries
	Figure 1 2. Content Applications Span the Enterprise

	The Building Blocks of Enterprise Content Management
	Pervasive Content Management
	Figure 1 3. Pervasive Content Management

	Managing the Content Lifecycle
	Figure 1 4. The Content Lifecycle
	Creating and Capturing Content
	Figure 1 5. Integration with Authoring Tools

	Managing Content
	Figure 1 6. Version and Rendition Management
	Figure 1 7. Virtual Document Management

	Delivering Content
	Figure 1 8. XML Publishing

	Archiving Content
	Processing Content
	Figure 1 9. Content Lifecycle Management

	Creating Content Applications
	Completing the Digital Value Chain
	Figure 1 10. The Digital Value Chain

	System Architecture
	The Four Layers of the Documentum ECM Platform
	Figure 2 1. Basic Documentum Architecture

	Content Repository and Services Layer
	Documentum Content Repository
	Figure 2 2. Content Repository Structure
	Figure 2 3. Globally Distributed Content Repository

	Content Objects
	Figure 2 4. Documentum Document Object
	Figure 2 5. Documentum Object Hierarchy and Sample Attributes

	Content Server
	Repository Services
	Figure 2 6. User Authentication

	Library Services
	Figure 2 7. Version Tree
	Figure 2 8. Object Relationships

	Content Management Services
	XML Content Management Services
	Figure 2 9. XML Content Management

	Process Automation Services
	Figure 2 10. Documentum Workflow

	Extended Services
	Media Services
	Figure 2 11. Media Services Architecture

	Content Intelligence Services
	Figure 2 12. Extracting Information From a Document With Content
	Figure 2 13. Conceptual Classification

	Content Exchange Services
	Figure 2 14. Content Exchange Services
	Figure 2 15. Inter-Enterprise Workflow Services

	Site Delivery Services
	Figure 2 16. Publishing to a Web Site With Site Caching Services
	Figure 2 17. Site Deployment Services Builds on Site Caching Ser

	Interface Layer
	Figure 2 18. Documentum Application Programming Interface (DAPI)
	Documentum Foundation Classes
	Figure 2 19. Simple Client and Server Architecture

	Documentum Business Object Framework
	Figure 2 20. Product Business Object

	Web Services
	Standard-Based Interfaces

	Client Layer
	Microsoft Windows-Based Applications
	Figure 2 21. Documentum Desktop

	Documentum Web-Based Applications
	Figure 2 22. Documentum Webtop

	Content Services Integration with Enterprise Applications
	Figure 2 23. Content Services for SAP

	Developer Tools
	The Development Life Cycle
	Figure 3 1. Development Life Cycle for Content Applications

	Configuring Content Applications
	Documentum Administrator
	Documentum Application Builder
	Figure 3 2. Documentum Application Builder

	Developing Content Applications
	Figure 3 3. Applications Involve Coordinated Customizations at A
	Figure 3 4. Documentum Development Tools
	Documentum Foundation Classes
	Figure 3 5. Documentum Foundation Classes

	Business Objects Framework
	Figure 3 6. Custom Object Types
	Type-Based Business Objects
	Figure 3 7. Type-Based Business Object

	Service-Based Business Objects
	Figure 3 8. Service-Based Business Object

	Data Access APIs
	Figure 3 9. Documentum JDBC Services

	Documentum Web Development Kit
	Figure 3 10. Documentum Web Development Kit (WDK) Architecture

	Documentum Desktop Development Kit
	Documentum Portal Integration Kit
	Figure 3 11. PIK Architecture

	Documentum Media Services SDK
	Figure 3 12. Media Services Plug-Ins

	Deploying Content Applications
	Figure 3 13. Deploying Content Applications as DocApps

	Enterprise Platform Fundamentals
	Open
	Extensible
	Scalable
	Multitiered Deployment
	Figure 4 1. Three-Tier Deployment

	Horizontal and Vertical Scalability
	High Performance
	Minimizing Connections
	Figure 4 2. Connection Pooling

	Minimizing Data Transfer
	Figure 4 3. Webtop Streamline View

	Reliable
	Figure 4 4. Content Server Clustering

	Secure
	Portable
	Global
	Figure 4 5. Web Content Language Fallback Rules

	Comprehensive
	Figure 4 6. Documentum Universe

	About Documentum

	Tables
	Table 3 1. DFC Packages
	Table 4 1. Supported Configurations

